Suppr超能文献

使用简单贝叶斯模型的变体在出院小结中检测药物不良事件。

Detecting adverse drug events in discharge summaries using variations on the simple Bayes model.

作者信息

Visweswaran Shyam, Hanbury Paul, Saul Melissa, Cooper Gregory F

机构信息

Center for Biomedical Informatics, University of Pittsburgh, Pennsylvania, USA.

出版信息

AMIA Annu Symp Proc. 2003;2003:689-93.

Abstract

Detection and prevention of adverse events and, in particular, adverse drug events (ADEs), is an important problem in health care today. We describe the implementation and evaluation of four variations on the simple Bayes model for identifying ADE-related discharge summaries. Our results show that these probabilistic techniques achieve an ROC curve area of up to 0.77 in correctly determining which patient cases should be assigned an ADE-related ICD-9-CM code. These results suggest a potential for these techniques to contribute to the development of an automated system that helps identify ADEs, as a step toward further understanding and preventing them.

摘要

不良事件尤其是药物不良事件(ADEs)的检测与预防是当今医疗保健领域的一个重要问题。我们描述了用于识别与ADE相关出院小结的简单贝叶斯模型的四种变体的实施与评估。我们的结果表明,这些概率技术在正确确定哪些患者病例应被分配与ADE相关的ICD - 9 - CM代码方面,实现了高达0.77的ROC曲线面积。这些结果表明这些技术有可能有助于开发一个有助于识别ADEs的自动化系统,作为进一步理解和预防ADEs的一步。

相似文献

8
Identifying drug safety issues: from research to practice.识别药物安全问题:从研究到实践。
Int J Qual Health Care. 2000 Feb;12(1):69-76. doi: 10.1093/intqhc/12.1.69.

引用本文的文献

4
Automated identification of extreme-risk events in clinical incident reports.临床事件报告中极端风险事件的自动识别。
J Am Med Inform Assoc. 2012 Jun;19(e1):e110-8. doi: 10.1136/amiajnl-2011-000562. Epub 2012 Jan 11.
5
Drug side effect extraction from clinical narratives of psychiatry and psychology patients.从精神病学和心理学患者的临床叙述中提取药物副作用。
J Am Med Inform Assoc. 2011 Dec;18 Suppl 1(Suppl 1):i144-9. doi: 10.1136/amiajnl-2011-000351. Epub 2011 Sep 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验