Suppr超能文献

海马体损伤的缺氧受试者概率性类别学习受损。

Impaired probabilistic category learning in hypoxic subjects with hippocampal damage.

作者信息

Hopkins Ramona O, Myers Catherine E, Shohamy Daphna, Grossman Steven, Gluck Mark

机构信息

Psychology Department and Neuroscience Center, Brigham Young University, Provo, UT, USA.

出版信息

Neuropsychologia. 2004;42(4):524-35. doi: 10.1016/j.neuropsychologia.2003.09.005.

Abstract

Previous research has suggested that a probabilistic category learning task (e.g. weather prediction task) can be used to elucidate brain substrates of learning. We tested amnesic subjects with bilateral hippocampal damage due to hypoxia and matched controls on the weather prediction task and a variant, the "ice cream" task, which maintains a similar category structure. The hypoxic subjects were impaired relative to controls on both tasks; in the ice cream task, this difference was evident even early in training (first 50 trials). This finding is similar to functional neuroimaging (fMRI) studies in healthy subjects, which show medial temporal involvement even in early learning on this task. Additionally, strategy analysis of response patterns during learning suggest that the hypoxic group relied more heavily on simple, degraded learning strategies than did the control group. These results may suggest a qualification of the generally held conclusion that amnesic patients are not impaired at probabilistic category learning: at least under some circumstances, amnesic patients show an early and lasting deficit.

摘要

先前的研究表明,概率性类别学习任务(如天气预报任务)可用于阐明学习的脑基质。我们对因缺氧导致双侧海马损伤的失忆症患者及相匹配的对照组进行了天气预报任务和一个变体任务——“冰淇淋”任务的测试,这两个任务具有相似的类别结构。在这两个任务中,缺氧患者相对于对照组均表现出损伤;在“冰淇淋”任务中,这种差异甚至在训练早期(前50次试验)就很明显。这一发现与对健康受试者的功能性神经成像(fMRI)研究相似,该研究表明即使在此任务的早期学习阶段,内侧颞叶也会参与其中。此外,对学习过程中反应模式的策略分析表明,缺氧组比对照组更严重地依赖简单、退化的学习策略。这些结果可能意味着对普遍持有的结论——失忆症患者在概率性类别学习方面没有受损——进行修正:至少在某些情况下,失忆症患者表现出早期且持续的缺陷。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验