Suppr超能文献

表面显微镜下黑素细胞病变图像中暗区的自动提取与描述

Automated extraction and description of dark areas in surface microscopy melanocytic lesion images.

作者信息

Pellacani Giovanni, Grana Costantino, Cucchiara Rita, Seidenari Stefania

机构信息

Department of Dermatology, University of Modena and Reggio Emila, Modena, Italy.

出版信息

Dermatology. 2004;208(1):21-6. doi: 10.1159/000075041.

Abstract

BACKGROUND

Identification of dark areas inside a melanocytic lesion (ML) is of great importance for melanoma diagnosis, both during clinical examination and employing programs for automated image analysis.

OBJECTIVE

The aim of our study was to compare two different methods for the automated identification and description of dark areas in epiluminescence microscopy images of MLs and to evaluate their diagnostic capability.

METHODS

Two methods for the automated extraction of 'absolute' (ADAs) and 'relative' dark areas (RDAs) and a set of parameters for their description were developed and tested on 339 images of MLs acquired by means of a polarized-light videomicroscope.

RESULTS

Significant differences in dark area distribution between melanomas and nevi were observed employing both methods, permitting a good discrimination of MLs (diagnostic accuracy = 74.6 and 71.2% for ADAs and RDAs, respectively).

CONCLUSIONS

Both methods for the automated identification of dark areas are useful for melanoma diagnosis and can be implemented in programs for image analysis.

摘要

背景

在临床检查以及采用自动图像分析程序时,识别黑素细胞性病变(ML)内的暗区对于黑色素瘤诊断至关重要。

目的

我们研究的目的是比较两种不同方法,用于自动识别和描述ML的表皮透光显微镜图像中的暗区,并评估它们的诊断能力。

方法

开发了两种用于自动提取“绝对”(ADAs)和“相对”暗区(RDAs)的方法以及一组用于描述它们的参数,并在通过偏光视频显微镜获取的339张ML图像上进行了测试。

结果

使用这两种方法均观察到黑色素瘤和痣之间暗区分布存在显著差异,从而能够很好地区分ML(ADAs和RDAs的诊断准确率分别为74.6%和71.2%)。

结论

两种自动识别暗区的方法均对黑色素瘤诊断有用,并且可以在图像分析程序中实现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验