Caudle M Tyler, Mobley Charles K, Bafaro Laura M, LoBrutto Russell, Yee Gordon T, Groy Thomas L
Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA.
Inorg Chem. 2004 Jan 26;43(2):506-14. doi: 10.1021/ic0349757.
The reaction between Mn(6)L(12) and Mg(6)L(12) (L = N,N-diethylcarbamate) results in isolation of heteronuclear complexes Mn(n)Mg(6)(-)(n)L(12). A series was prepared with different doping factors n by varying the Mn/Mg ratio in the crystallization solutions. Single-crystal X-ray diffraction shows that MnMg(5)L(12) is isostructural with Mn(6)L(12) and Mg(6)L(12). Magnetic susceptibility data on the series Mn(n)Mg(6)(-)(n)L(12) (n = 1-6) are consistent with antiferromagnetic Mn.Mn interactions. At low n, the magnetic data demonstrate the formation of magnetically isolated Mn(2+) centers. This was confirmed by measurement of the EPR spectrum at a doping factor n = 0.06 in solution, as a powder, and as single crystals. These show hyperfine interactions consistent with isolated Mn(2+). The EPR spectrum of Mn(0.06)Mg(5.94)L(12) exhibits a dominant signal at g(eff) = 4, and a wide series of less intense signals spanning 200-6000 G in the X-band regime. This unusual behavior in a weak-field Mn(2+) complex is attributed to the substantial distortions from cubic ligand field geometry in this system. The g(eff) = 4 signals are attributed to a C(2)-symmetric hexacoordinate Mn(2+) ion with D > 0.3 cm(-)(1) and E/D = 0.33. The wide series is assigned to an axial C(4)(v) pentacoordinate Mn(2+) site with D = 0.05 cm(-)(1). Comparison of the g(eff) = 4 signals to the g = 4.1 signals exhibited by the tetramanganese complex in photosystem II belies the fact that they almost certainly arise from different spin systems. In addition, the similarity of the spectrum of Mn(n)Mg(6)(-)(n)L(12) to mononuclear Mn(4+) complexes suggests that considerable care must be exercised in the use of EPR as a fingerprint for the manganese oxidation state, particularly in manganese proteins where molecular composition may not be precisely established.
Mn(6)L(12)与Mg(6)L(12)(L = N,N - 二乙基氨基甲酸盐)之间的反应导致了异核配合物Mn(n)Mg(6)(−)(n)L(12)的分离。通过改变结晶溶液中的Mn/Mg比例,制备了具有不同掺杂因子n的一系列配合物。单晶X射线衍射表明,MnMg(5)L(12)与Mn(6)L(12)和Mg(6)L(12)同构。关于Mn(n)Mg(6)(−)(n)L(12)系列(n = 1 - 6)的磁化率数据与反铁磁性的Mn.Mn相互作用一致。在低n时,磁性数据表明形成了磁隔离的Mn(2+)中心。通过在溶液中、作为粉末以及作为单晶在掺杂因子n = 0.06时测量EPR光谱证实了这一点。这些光谱显示出与孤立的Mn(2+)一致的超精细相互作用。Mn(0.06)Mg(5.94)L(12)的EPR光谱在g(eff) = 4处呈现出一个主导信号,并且在X波段范围内有一系列强度较低的信号,范围跨越200 - 6000 G。这种在弱场Mn(2+)配合物中的异常行为归因于该体系中立方配体场几何结构的显著畸变。g(eff) = 4的信号归因于一个具有D > 0.3 cm(−)(1)和E/D = 0.33的C(2)对称六配位Mn(2+)离子。宽系列信号归因于一个具有D = 0.05 cm(−)(1)的轴向C(4)(v)五配位Mn(2+)位点。将g(eff) = 4的信号与光系统II中的四锰配合物所呈现的g = 4.1信号进行比较,表明它们几乎肯定源自不同的自旋体系。此外,Mn(n)Mg(6)(−)(n)L(12)的光谱与单核Mn(4+)配合物的相似性表明,在将EPR用作锰氧化态的指纹时必须格外小心,特别是在分子组成可能无法精确确定的锰蛋白中。