Lloyd Matthew D, Lipscomb Sarah J, Hewitson Kirsty S, Hensgens Charles M H, Baldwin Jack E, Schofield Christopher J
Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.
J Biol Chem. 2004 Apr 9;279(15):15420-6. doi: 10.1074/jbc.M313928200. Epub 2004 Jan 20.
Deacetoxycephalosporin/deacetylcephalosporin C synthase (DAOC/DACS) is an iron(II) and 2-oxoglutarate-dependent oxygenase involved in the biosynthesis of cephalosporin C in Cephalosporium acremonium. It catalyzes two oxidative reactions, oxidative ring-expansion of penicillin N to deacetoxycephalosporin C, and hydroxylation of the latter to give deacetylcephalosporin C. The enzyme is closely related to deacetoxycephalosporin C synthase (DAOCS) and DACS from Streptomyces clavuligerus, which selectively catalyze ring-expansion or hydroxylation reactions, respectively. In this study, structural models based on DAOCS coupled with site-directed mutagenesis were used to identify residues within DAOC/DACS that are responsible for controlling substrate and reaction selectivity. The M306I mutation abolished hydroxylation of deacetylcephalosporin C, whereas the W82A mutant reduced ring-expansion of penicillin G (an "unnatural" substrate). Truncation of the C terminus of DAOC/DACS to residue 310 (Delta310 mutant) enhanced ring-expansion of penicillin G by approximately 2-fold. A double mutant, Delta310/M306I, selectively catalyzed the ring-expansion reaction and had similar kinetic parameters to the wild-type DAOC/DACS. The Delta310/N305L/M306I triple mutant selectively catalyzed ring-expansion of penicillin G and had improved kinetic parameters (K(m) = 2.00 +/- 0.47 compared with 6.02 +/- 0.97 mm for the wild-type enzyme). This work demonstrates that a single amino acid residue side chain within the DAOC/DACS active site can control whether the enzyme catalyzes ring-expansion, hydroxylation, or both reactions. The catalytic efficiency of mutant enzymes can be improved by combining active site mutations with other modifications including C-terminal truncation and modification of Asn-305.
脱乙酰氧基头孢菌素/去乙酰头孢菌素C合酶(DAOC/DACS)是一种依赖铁(II)和2-氧代戊二酸的加氧酶,参与顶头孢霉中头孢菌素C的生物合成。它催化两个氧化反应,即青霉素N的氧化扩环生成脱乙酰氧基头孢菌素C,以及后者的羟基化反应生成去乙酰头孢菌素C。该酶与来自棒状链霉菌的脱乙酰氧基头孢菌素C合酶(DAOCS)和DACS密切相关,它们分别选择性催化扩环或羟基化反应。在本研究中,基于DAOCS的结构模型结合定点诱变用于鉴定DAOC/DACS中负责控制底物和反应选择性的残基。M306I突变消除了去乙酰头孢菌素C的羟基化反应,而W82A突变体降低了青霉素G(一种“非天然”底物)的扩环反应。将DAOC/DACS的C末端截短至第310位残基(Δ310突变体)使青霉素G的扩环反应增强了约2倍。双突变体Δ310/M306I选择性催化扩环反应,并且具有与野生型DAOC/DACS相似的动力学参数。Δ310/N305L/M306I三突变体选择性催化青霉素G的扩环反应,并且具有改善的动力学参数(K(m) = 2.00 +/- 0.47,而野生型酶为6.02 +/- 0.97 mM)。这项工作表明,DAOC/DACS活性位点内的单个氨基酸残基侧链可以控制该酶是否催化扩环、羟基化或两者反应。通过将活性位点突变与包括C末端截短和Asn-305修饰在内的其他修饰相结合,可以提高突变酶的催化效率。