Korotkova Natalia, Lidstrom Mary E
Departments of Chemical Engineering and Microbiology, University of Washington, Seattle, Washington 98195-1750, USA.
J Biol Chem. 2004 Apr 2;279(14):13652-8. doi: 10.1074/jbc.M312852200. Epub 2004 Jan 20.
Adenosylcobalamin-dependent methylmalonyl-CoA mutase catalyzes the interconversion of methylmalonyl-CoA and succinyl-CoA. In humans, deficiencies in the mutase lead to methylmalonic aciduria, a rare disease that is fatal in the first year of life. Such inherited deficiencies can result from mutations in the mutase structural gene or from mutations that impair the acquisition of cobalamins. Recently, a human gene of unknown function, MMAA, has been implicated in methylmalonic aciduria (Dobson, C. M., Wai, T., Leclerc, D., Wilson, A., Wu, X., Dore, C., Hudson, T., Rosenblatt, D. S., and Gravel, R. A. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 15554-15559). MMAA orthologs are widespread in bacteria, archaea, and eukaryotes. In Methylobacterium extorquens AM1, a mutant defective in the MMAA homolog meaB was unable to grow on C(1) and C(2) compounds because of the inability to convert methylmalonyl-CoA to succinyl-CoA (Korotkova N., Chistoserdova, L., Kuksa, V., and Lidstrom, M. E. (2002) J. Bacteriol. 184, 1750-1758). Here we demonstrate that this defect is not due to the absence of adenosylcobalamin but due to an inactive form of methylmalonyl-CoA mutase. The presence of active mutase in double mutants defective in MeaB and in the synthesis of either R-methylmalonyl-CoA or adenosylcobalamin indicates that MeaB is necessary for protection of mutase from inactivation during catalysis. MeaB and methylmalonyl-CoA mutase from M. extorquens were cloned and purified in their active forms. We demonstrated that MeaB forms a complex with methylmalonyl-CoA mutase and stimulates in vitro mutase activity. These results support the hypothesis that MeaB functions to protect methylmalonyl-CoA mutase from irreversible inactivation.
腺苷钴胺素依赖性甲基丙二酰辅酶A变位酶催化甲基丙二酰辅酶A与琥珀酰辅酶A的相互转化。在人类中,该变位酶的缺陷会导致甲基丙二酸尿症,这是一种罕见的疾病,在生命的第一年是致命的。这种遗传性缺陷可能是由于变位酶结构基因的突变,或者是由于损害钴胺素获取的突变。最近,一个功能未知的人类基因MMAA与甲基丙二酸尿症有关(多布森,C.M.,韦,T.,勒克莱尔,D.,威尔逊,A.,吴,X.,多尔,C.,哈德森,T.,罗森布拉特,D.S.,和格拉弗尔,R.A.(2002年)《美国国家科学院院刊》99,15554 - 15559)。MMAA直系同源物在细菌、古菌和真核生物中广泛存在。在甲基营养型细菌AM1中,MMAA同源物meaB缺陷的突变体由于无法将甲基丙二酰辅酶A转化为琥珀酰辅酶A,而不能在C(1)和C(2)化合物上生长(科罗特科娃N.,奇斯托瑟多娃,L.,库克萨,V.,和利德斯特罗姆,M.E.(2002年)《细菌学杂志》184,1750 - 1758)。在这里,我们证明这种缺陷不是由于腺苷钴胺素的缺失,而是由于甲基丙二酰辅酶A变位酶的无活性形式。在meaB以及R - 甲基丙二酰辅酶A或腺苷钴胺素合成缺陷的双突变体中存在活性变位酶,这表明meaB对于在催化过程中保护变位酶不被失活是必要的。来自甲基营养型细菌的meaB和甲基丙二酰辅酶A变位酶以其活性形式被克隆和纯化。我们证明meaB与甲基丙二酰辅酶A变位酶形成复合物并刺激体外变位酶活性。这些结果支持了meaB的功能是保护甲基丙二酰辅酶A变位酶不被不可逆失活的假说。