Suppr超能文献

在大肠杆菌中构建用于生产丙酸盐的新型厌氧途径。

Construction of a novel anaerobic pathway in Escherichia coli for propionate production.

作者信息

Li Jing, Zhu Xinna, Chen Jing, Zhao Dongdong, Zhang Xueli, Bi Changhao

机构信息

Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.

出版信息

BMC Biotechnol. 2017 Apr 14;17(1):38. doi: 10.1186/s12896-017-0354-5.

Abstract

BACKGROUND

Propionate is widely used as an important preservative and important chemical intermediate for synthesis of cellulose fibers, herbicides, perfumes and pharmaceuticals. Biosynthetic propionate has mainly been produced by Propionibacterium, which has various limitations for industrial application.

RESULTS

In this study, we engineered E. coli by combining reduced TCA cycle with the native sleeping beauty mutase (Sbm) cycle to construct a redox balanced and energy viable fermentation pathway for anaerobic propionate production. As the cryptic Sbm operon was over-expressed in E. coli MG1655, propionate titer reached 0.24 g/L. To increase precursor supply for the Sbm cycle, genetic modification was made to convert mixed fermentation products to succinate, which slightly increased propionate production. For optimal expression of Sbm operon, different types of promoters were examined. A strong constitutive promoter Pbba led to the highest titer of 2.34 g/L. Methylmalonyl CoA mutase from Methylobacterium extorquens AM1 was added to strain T110(pbba-Sbm) to enhance this rate limiting step. With optimized expression of this additional Methylmalonyl CoA mutase, the highest production strain was obtained with a titer of 4.95 g/L and a yield of 0.49 mol/mol glucose.

CONCLUSIONS

With various metabolic engineering strategies, the propionate titer from fermentation achieved 4.95 g/L. This is the reported highest anaerobic production of propionate by heterologous host. Due to host advantages, such as non-strict anaerobic condition, mature engineering and fermentation techniques, and low cost minimal media, our work has built the basis for industrial propionate production with E. coli chassis.

摘要

背景

丙酸被广泛用作重要的防腐剂以及合成纤维素纤维、除草剂、香料和药物的重要化学中间体。生物合成丙酸主要由丙酸杆菌产生,其在工业应用中存在各种局限性。

结果

在本研究中,我们通过将减少的三羧酸循环与天然的沉睡美人变位酶(Sbm)循环相结合对大肠杆菌进行工程改造,构建了用于厌氧生产丙酸的氧化还原平衡且能量可行的发酵途径。由于隐秘的Sbm操纵子在大肠杆菌MG1655中过表达,丙酸产量达到0.24 g/L。为增加Sbm循环的前体供应,进行了基因改造以将混合发酵产物转化为琥珀酸,这略微提高了丙酸产量。为实现Sbm操纵子的最佳表达,研究了不同类型的启动子。一个强组成型启动子Pbba导致最高产量达到2.34 g/L。将来自嗜甲基甲基杆菌AM1的甲基丙二酰辅酶A变位酶添加到菌株T110(pbba-Sbm)中以增强这一限速步骤。随着这种额外的甲基丙二酰辅酶A变位酶的优化表达,获得了最高产菌株,产量为4.95 g/L,葡萄糖产率为0.49 mol/mol。

结论

通过各种代谢工程策略,发酵产生的丙酸产量达到4.95 g/L。这是报道的异源宿主厌氧生产丙酸的最高产量。由于宿主具有诸如非严格厌氧条件、成熟的工程和发酵技术以及低成本的基本培养基等优势,我们的工作为以大肠杆菌为底盘进行工业丙酸生产奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e412/5391575/c0485a7462d3/12896_2017_354_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验