Suppr超能文献

基于相关滤波器的生物特征验证。

Biometric verification with correlation filters.

作者信息

Vijaya Kumar B V K, Savvides Marios, Xie Chunyan, Venkataramani Krithika, Thornton Jason, Mahalanobis Abhijit

机构信息

Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.

出版信息

Appl Opt. 2004 Jan 10;43(2):391-402. doi: 10.1364/ao.43.000391.

Abstract

Using biometrics for subject verification can significantly improve security over that of approaches based on passwords and personal identification numbers, both of which people tend to lose or forget. In biometric verification the system tries to match an input biometric (such as a fingerprint, face image, or iris image) to a stored biometric template. Thus correlation filter techniques are attractive candidates for the matching precision needed in biometric verification. In particular, advanced correlation filters, such as synthetic discriminant function filters, can offer very good matching performance in the presence of variability in these biometric images (e.g., facial expressions, illumination changes, etc.). We investigate the performance of advanced correlation filters for face, fingerprint, and iris biometric verification.

摘要

使用生物识别技术进行受试者验证,相比基于密码和个人识别码的方法,能显著提高安全性,因为人们往往会丢失或忘记密码和识别码。在生物识别验证中,系统会尝试将输入的生物特征(如指纹、面部图像或虹膜图像)与存储的生物特征模板进行匹配。因此,相关滤波器技术是生物识别验证所需匹配精度的理想选择。特别是先进的相关滤波器,如合成判别函数滤波器,在这些生物特征图像存在变化(如面部表情、光照变化等)的情况下,能提供非常好的匹配性能。我们研究了先进相关滤波器在面部、指纹和虹膜生物识别验证中的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验