Suppr超能文献

周期性表达基因的统计重同步与贝叶斯检测

Statistical resynchronization and Bayesian detection of periodically expressed genes.

作者信息

Lu Xin, Zhang Wen, Qin Zhaohui S, Kwast Kurt E, Liu Jun S

机构信息

Department of Statistics, Harvard University, Cambridge, MA 02138, USA.

出版信息

Nucleic Acids Res. 2004 Jan 22;32(2):447-55. doi: 10.1093/nar/gkh205. Print 2004.

Abstract

We propose a periodic-normal mixture (PNM) model to fit transcription profiles of periodically expressed (PE) genes in cell cycle microarray experiments. The model leads to a principled statistical estimation procedure that produces more accurate estimates of the mean cell cycle length and the gene expression periodicity than existing heuristic approaches. A central component of the proposed procedure is the resynchronization of the observed transcription profile of each PE gene according to the PNM with estimated periodicity parameters. By using a two-component mixture-Beta model to approximate the PNM fitting residuals, we employ an empirical Bayes method to detect PE genes. We estimate that about one-third of the genes in the genome of Saccharomyces cerevisiae are likely to be transcribed periodically, and identify 822 genes whose posterior probabilities of being PE are greater than 0.95. Among these 822 genes, 540 are also in the list of 800 genes detected by Spellman. Gene ontology annotation analysis shows that many of the 822 genes were involved in important cell cycle-related processes, functions and components. When matching the 822 resynchronized expression profiles of three independent experiments, little phase shifts were observed, indicating that the three synchronization methods might have brought cells to the same phase at the time of release.

摘要

我们提出了一种周期-正态混合(PNM)模型,用于拟合细胞周期微阵列实验中周期性表达(PE)基因的转录谱。该模型引出了一种有原则的统计估计程序,与现有的启发式方法相比,它能更准确地估计平均细胞周期长度和基因表达周期性。所提出程序的一个核心组成部分是根据具有估计周期性参数的PNM对每个PE基因的观察到的转录谱进行重新同步。通过使用双组分混合-贝塔模型来近似PNM拟合残差,我们采用经验贝叶斯方法来检测PE基因。我们估计酿酒酵母基因组中约三分之一的基因可能会周期性转录,并鉴定出822个其为PE的后验概率大于0.95的基因。在这822个基因中,有540个也在Spellman检测到的800个基因列表中。基因本体注释分析表明,这822个基因中的许多都参与了重要的细胞周期相关过程、功能和组分。当匹配三个独立实验的822个重新同步的表达谱时,观察到的相位偏移很小,这表明这三种同步方法可能在释放时将细胞带到了相同的相位。

相似文献

5
SCEPTRANS: an online tool for analyzing periodic transcription in yeast.SCEPTRANS:一种用于分析酵母中周期性转录的在线工具。
Bioinformatics. 2007 Jun 15;23(12):1559-61. doi: 10.1093/bioinformatics/btm126. Epub 2007 Mar 30.
7
Using Bayesian networks to analyze expression data.使用贝叶斯网络分析表达数据。
J Comput Biol. 2000;7(3-4):601-20. doi: 10.1089/106652700750050961.
9
Time ordering of gene coexpression.基因共表达的时间排序
Biostatistics. 2006 Oct;7(4):569-84. doi: 10.1093/biostatistics/kxj026. Epub 2006 Feb 22.

引用本文的文献

3
Principal-oscillation-pattern analysis of gene expression.基因表达的主振型分析。
PLoS One. 2012;7(1):e28805. doi: 10.1371/journal.pone.0028805. Epub 2012 Jan 10.
6
Circadian control of global gene expression patterns.昼夜节律对全球基因表达模式的控制。
Annu Rev Genet. 2010;44:419-44. doi: 10.1146/annurev-genet-102209-163432.

本文引用的文献

2
Transcriptional regulatory networks in Saccharomyces cerevisiae.酿酒酵母中的转录调控网络。
Science. 2002 Oct 25;298(5594):799-804. doi: 10.1126/science.1075090.
6
Deciphering gene expression regulatory networks.破译基因表达调控网络。
Curr Opin Genet Dev. 2002 Apr;12(2):130-6. doi: 10.1016/s0959-437x(02)00277-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验