Suppr超能文献

齐普夫定律与人类转录组:基于进化模型的解释

Zipf's law and human transcriptomes: an explanation with an evolutionary model.

作者信息

Ogasawara Osamu, Kawamoto Shoko, Okubo Kousaku

机构信息

Division of Gene Expression analysis, The Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Mishima 411-8540, Shizuoka, Japan.

出版信息

C R Biol. 2003 Oct-Nov;326(10-11):1097-101. doi: 10.1016/j.crvi.2003.09.031.

Abstract

Detailed analysis of human gene expression data reveals several patterns of relationship between transcript frequency and abundance rank. In muscle and liver, organs composed primarily of a homogeneous population of differentiated cells, they obey Zipf's law. In cell lines, epithelial tissue and compiled transcriptome data, only high-rankers deviate from it. We propose an evolutionary process model during which expression level changes stochastically proportionally to its intensity, providing a novel interpretation of transcriptome data and of evolutionary constraints on gene expression.

摘要

对人类基因表达数据的详细分析揭示了转录本频率与丰度排名之间的几种关系模式。在主要由同质分化细胞群体组成的肌肉和肝脏器官中,它们遵循齐普夫定律。在细胞系、上皮组织和汇编的转录组数据中,只有高排名的转录本偏离该定律。我们提出了一个进化过程模型,在此过程中表达水平随机地与其强度成比例变化,这为转录组数据以及基因表达的进化限制提供了一种新的解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验