Hervé Jean-Claude, Plaisance Isabelle, Loncarek Jadranka, Duthe Fabien, Sarrouilhe Denis
Equipe Communications Jonctionnelles, Unité Mixte de Recherche CNRS 6558, Faculté de Sciences Fondamentales et Appliquées, Université de Poitiers, 40 avenue du R. Pineau, 86022 Poitiers, France.
Eur Biophys J. 2004 May;33(3):201-10. doi: 10.1007/s00249-003-0381-0. Epub 2004 Jan 27.
Gap junctions, specialized membrane structures that mediate cell-to-cell communication in almost all animal tissues, are composed of channel-forming integral membrane proteins termed connexins. Most of them, particularly connexin43 (Cx43), the most ubiquitous connexin, the major connexin present in cardiac myocytes, are phosphoproteins. Connexin phosphorylation has been thought to regulate gap junctional protein trafficking, gap junction assembly, channel gating, and turnover. Some connexins, including Cx43, show mobility shifts in gel electrophoresis when cells are exposed to phosphorylating or dephosphorylating treatments. However, after exposure of rat cardiac myocytes to different uncoupling dephosphorylating agents such as H7 or butanedione monoxime, no modification in the Cx43 phosphorylation profile was generally observed. The lack of direct correlation between the inhibition of cell-to-cell communication and changes in the phosphorylation pattern of Cx43 or, conversely, modifications of the latter without modifications of the intercellular coupling degree, suggest that the functional state of junctional channels might rather be determined by regulatory proteins associated with Cx43. The modulation of the activity of junctional channels by protein phosphorylation/dephosphorylation processes very likely requires (as for several other membrane channels) the formation of a multiprotein complex, where pore-forming subunits bind to auxiliary proteins (e.g. scaffolding proteins, enzymes, cytoskeleton elements) that play essential roles in channel localization and activity. Such regulatory proteins, behaving as targets for phosphorylation/dephosphorylation catalysers, might in particular control the open probability of junctional channels. A schematic illustration of the regulation of Cx43-made channels by protein phosphorylation involving a partner phosphoprotein is proposed.
间隙连接是介导几乎所有动物组织中细胞间通讯的特殊膜结构,由称为连接蛋白的形成通道的整合膜蛋白组成。其中大多数,特别是连接蛋白43(Cx43),这种最普遍存在的连接蛋白,也是心肌细胞中主要的连接蛋白,都是磷蛋白。连接蛋白磷酸化被认为可调节间隙连接蛋白的运输、间隙连接组装、通道门控和更新。一些连接蛋白,包括Cx43,当细胞暴露于磷酸化或去磷酸化处理时,在凝胶电泳中会出现迁移率变化。然而,将大鼠心肌细胞暴露于不同的解偶联去磷酸化剂(如H7或丁二酮单肟)后,通常未观察到Cx43磷酸化谱的改变。细胞间通讯的抑制与Cx43磷酸化模式的变化之间缺乏直接相关性,或者相反,后者发生改变而细胞间偶联程度未改变,这表明连接通道的功能状态可能更多地由与Cx43相关的调节蛋白决定。通过蛋白质磷酸化/去磷酸化过程对连接通道活性的调节很可能需要(如同其他几种膜通道一样)形成多蛋白复合物,其中形成孔的亚基与在通道定位和活性中起重要作用的辅助蛋白(如支架蛋白、酶、细胞骨架成分)结合。这种作为磷酸化/去磷酸化催化剂靶点的调节蛋白可能特别控制连接通道的开放概率。本文提出了一个涉及伴侣磷蛋白的蛋白质磷酸化对Cx43形成的通道进行调节的示意图。