Zhang Heping
Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA.
Stat Methods Med Res. 2004 Feb;13(1):63-82. doi: 10.1191/0962280204sm353ra.
In this article, I review the use of nonparametric methods in the analysis of longitudinal and growth curve data, particularly the multivariate adaptive splines models for the analysis of longitudinal data (MASAL). These methods combine nonparametric techniques (B-splines, kernel smoothing, piecewise polynomials) and models with random effects, and provide fruitful alternatives to mixed effects linear models. Similarities, differences, strengths and limitations among these methods are presented. The analysis of a real example is also presented to illustrate the application and interpretation of MASAL. Open questions are posed for further investigation.
在本文中,我回顾了非参数方法在纵向和生长曲线数据分析中的应用,特别是用于纵向数据分析的多元自适应样条模型(MASAL)。这些方法将非参数技术(B样条、核平滑、分段多项式)与随机效应模型相结合,为混合效应线性模型提供了富有成效的替代方法。文中介绍了这些方法之间的异同、优点和局限性。还给出了一个实际例子的分析,以说明MASAL的应用和解释。同时提出了一些开放性问题以供进一步研究。