Knodler L A, Schofield P J, Edwards M R
School of Biochemistry, University of New South Wales, Kensington, Australia.
Mol Biochem Parasitol. 1992 Nov;56(1):1-13. doi: 10.1016/0166-6851(92)90149-e.
The glucose analogue, 2-deoxy-D-glucose, was used to characterise the glucose transport system in Crithidia luciliae choanomastigotes. Uptake was temperature dependent with a Q10 of 2, and saturable with a Km of 0.22 mM and Vmax of 5.5 nmol min-1 (mg protein)-1 at 23 degrees C. Preloaded cells showed rapid exchange of intracellular 2-deoxy-D-glucose when incubated with extracellular D-glucose or 2-deoxy-D-glucose but little exchange with L-glucose. The substrate specificity of the uptake was studied using a number of D-glucose analogues. 6-Deoxy-D-glucose, 3-fluoro-3-deoxy-D-glucose and 4-fluoro-4-deoxy-D-glucose all competed for the transporter and had significant inhibitory effects on 2-deoxy-D-glucose transport. In contrast, 1-thio-beta-D-glucose, trehalose, 3-O-methyl-D-glucose, arginine, thymidine, L-sorbose and L-glucose were not inhibitory. The results imply the existence of a glucose transporter. The transport was blocked by a number of inhibitors and ionophores, including fluoride, azide, cyanide, dinitrophenol, valinomycin and nigericin. Overall, the uptake, exchange and efflux of 2-deoxy-D-glucose is consistent with transport via facilitated diffusion.