Suppr超能文献

海马切片培养中的稳态可塑性涉及电压门控性钠离子通道表达的变化。

Homeostatic plasticity in hippocampal slice cultures involves changes in voltage-gated Na+ channel expression.

作者信息

Aptowicz Caitlin O, Kunkler Phillip E, Kraig Richard P

机构信息

Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, USA

出版信息

Brain Res. 2004 Feb 20;998(2):155-63. doi: 10.1016/j.brainres.2003.11.035.

Abstract

Neurons preserve stable electrophysiological properties despite ongoing changes in morphology and connectivity throughout their lifetime. This dynamic compensatory adjustment, termed 'homeostatic plasticity', may be a fundamental means by which the brain normalizes its excitability, and is possibly altered in disease states such as epilepsy. Despite this significance, the cellular mechanisms of homeostatic plasticity are incompletely understood. Using field potential analyses, we observed a compensatory enhancement of neural excitability after 48 h of activity deprivation via tetrodotoxin (TTX) in hippocampal slice cultures. Because activity deprivation can enhance voltage-gated sodium channel (VGSC) currents, we used Western blot analyses to probe for these channels in control and activity-deprived slice cultures. A significant upregulation of VGSCs expression was evident after activity deprivation. Furthermore, immunohistochemistry revealed this upregulation to occur along primarily pyramidal cell dendrites. Western blot analyses of cultures after 1 day of recovery from activity deprivation showed that VGSC levels returned to control levels, indicating that multiple molecular mechanisms contribute to enhanced excitability. Because of their longevity and in vivo-like cytoarchitecture, we conclude that slice cultures may be highly useful for investigating homeostatic plasticity. Furthermore, we demonstrate that enhanced excitability involves changes in channel expression with a targeted localization likely profound transform the integrative capacities of hippocampal pyramidal cells and their dendrites.

摘要

神经元在其整个生命周期中,尽管形态和连接性不断变化,但仍保持稳定的电生理特性。这种动态的补偿性调节,称为“稳态可塑性”,可能是大脑使自身兴奋性正常化的一种基本方式,并且在癫痫等疾病状态下可能会发生改变。尽管具有如此重要的意义,但稳态可塑性的细胞机制仍未完全被理解。通过场电位分析,我们观察到在海马切片培养物中,使用河豚毒素(TTX)剥夺活动48小时后,神经兴奋性出现了补偿性增强。由于活动剥夺可以增强电压门控钠通道(VGSC)电流,我们使用蛋白质印迹分析来检测对照和活动剥夺切片培养物中的这些通道。活动剥夺后,VGSCs表达明显上调。此外,免疫组织化学显示这种上调主要发生在锥体细胞树突上。对活动剥夺恢复1天后的培养物进行蛋白质印迹分析表明,VGSC水平恢复到对照水平,这表明多种分子机制导致了兴奋性增强。由于其寿命长和具有类似体内的细胞结构,我们得出结论,切片培养物可能对研究稳态可塑性非常有用。此外,我们证明增强的兴奋性涉及通道表达的变化,其靶向定位可能深刻改变海马锥体细胞及其树突的整合能力。

相似文献

1
Homeostatic plasticity in hippocampal slice cultures involves changes in voltage-gated Na+ channel expression.
Brain Res. 2004 Feb 20;998(2):155-63. doi: 10.1016/j.brainres.2003.11.035.
7
Different forms of homeostatic plasticity are engaged with distinct temporal profiles.
Eur J Neurosci. 2006 Mar;23(6):1575-84. doi: 10.1111/j.1460-9568.2006.04692.x.
9
Control of Excitation/Inhibition Balance in a Hippocampal Circuit by Calcium Sensor Protein Regulation of Presynaptic Calcium Channels.
J Neurosci. 2018 May 2;38(18):4430-4440. doi: 10.1523/JNEUROSCI.0022-18.2018. Epub 2018 Apr 13.

引用本文的文献

4
Smn-Deficiency Increases the Intrinsic Excitability of Motoneurons.
Front Cell Neurosci. 2017 Sep 5;11:269. doi: 10.3389/fncel.2017.00269. eCollection 2017.
5
Voltage-gated Na currents in human dorsal root ganglion neurons.
Elife. 2017 May 16;6:e23235. doi: 10.7554/eLife.23235.
7
Bidirectional homeostatic plasticity induced by interneuron cell death and transplantation in vivo.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):492-7. doi: 10.1073/pnas.1307784111. Epub 2013 Dec 16.
8
REST/NRSF-mediated intrinsic homeostasis protects neuronal networks from hyperexcitability.
EMBO J. 2013 Nov 13;32(22):2994-3007. doi: 10.1038/emboj.2013.231. Epub 2013 Oct 22.
9
Homeostatic scaling of excitability in recurrent neural networks.
PLoS Comput Biol. 2012;8(5):e1002494. doi: 10.1371/journal.pcbi.1002494. Epub 2012 May 3.
10
A theory of rate coding control by intrinsic plasticity effects.
PLoS Comput Biol. 2012 Jan;8(1):e1002349. doi: 10.1371/journal.pcbi.1002349. Epub 2012 Jan 19.

本文引用的文献

1
Miniature synaptic transmission and BDNF modulate dendritic spine growth and form in rat CA1 neurones.
J Physiol. 2003 Dec 1;553(Pt 2):497-509. doi: 10.1113/jphysiol.2003.052639. Epub 2003 Sep 18.
3
Activity-independent homeostasis in rhythmically active neurons.
Neuron. 2003 Jan 9;37(1):109-20. doi: 10.1016/s0896-6273(02)01104-2.
6
A brain adaptation view of plasticity: is synaptic plasticity an overly limited concept?
Prog Brain Res. 2002;138:91-108. doi: 10.1016/S0079-6123(02)38073-7.
7
A problem with Hebb and local spikes.
Trends Neurosci. 2002 Sep;25(9):433-5. doi: 10.1016/s0166-2236(02)02200-2.
8
9
Critical periods for experience-dependent synaptic scaling in visual cortex.
Nat Neurosci. 2002 Aug;5(8):783-9. doi: 10.1038/nn878.
10
AMPA receptor trafficking and synaptic plasticity.
Annu Rev Neurosci. 2002;25:103-26. doi: 10.1146/annurev.neuro.25.112701.142758. Epub 2002 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验