Arumugam Saravanan, Garcera Ana, Soler Rosa M, Tabares Lucía
Department of Medical Physiology and Biophysics, School of Medicine University of SevilleSeville, Spain.
Unitat de Senyalització Neuronal, Departament de Medicina Experimental, Universitat de Lleida-IRBLLEIDALleida, Spain.
Front Cell Neurosci. 2017 Sep 5;11:269. doi: 10.3389/fncel.2017.00269. eCollection 2017.
During development, motoneurons experience significant changes in their size and in the number and strength of connections that they receive, which requires adaptive changes in their passive and active electrical properties. Even after reaching maturity, motoneurons continue to adjust their intrinsic excitability and synaptic activity for proper functioning of the sensorimotor circuit in accordance with physiological demands. Likewise, if some elements of the circuit become dysfunctional, the system tries to compensate for the alterations to maintain appropriate function. In Spinal Muscular Atrophy (SMA), a severe motor disease, spinal motoneurons receive less excitation from glutamatergic sensory fibers and interneurons and are electrically hyperexcitable. Currently, the origin and relationship among these alterations are not completely established. In this study, we investigated whether Survival of Motor Neuron (SMN), the ubiquitous protein defective in SMA, regulates the excitability of motoneurons before and after the establishment of the synaptic contacts. To this end, we performed patch-clamp recordings in embryonic spinal motoneurons forming complex synaptic networks in primary cultures, and in differentiated NSC-34 motoneuron-like cells in the absence of synaptic contacts. Our results show that in both conditions, Smn-deficient cells displayed lower action potential threshold, greater action potential amplitudes, and larger density of voltage-dependent sodium currents than cells with normal Smn-levels. These results indicate that Smn participates in the regulation of the cell-autonomous excitability of motoneurons at an early stage of development. This finding may contribute to a better understanding of motoneuron excitability in SMA during the development of the disease.
在发育过程中,运动神经元的大小、所接收连接的数量和强度都会发生显著变化,这就要求其被动和主动电特性进行适应性改变。即使在成熟之后,运动神经元仍会根据生理需求持续调整其内在兴奋性和突触活动,以确保感觉运动回路的正常运作。同样,如果回路的某些元件出现功能障碍,系统会试图补偿这些改变以维持适当功能。在严重的运动疾病脊髓性肌萎缩症(SMA)中,脊髓运动神经元从谷氨酸能感觉纤维和中间神经元接收的兴奋减少,并且电兴奋性过高。目前,这些改变的起源及其相互关系尚未完全明确。在本研究中,我们调查了运动神经元存活蛋白(SMN),即SMA中普遍存在缺陷的蛋白质,是否在突触联系建立之前和之后调节运动神经元的兴奋性。为此,我们在原代培养中形成复杂突触网络的胚胎脊髓运动神经元以及在无突触联系的分化NSC-34运动神经元样细胞中进行了膜片钳记录。我们的结果表明,在这两种情况下,与Smn水平正常的细胞相比,缺乏Smn的细胞表现出更低的动作电位阈值、更大的动作电位幅度以及更高密度的电压依赖性钠电流。这些结果表明,Smn在发育早期参与了运动神经元细胞自主兴奋性的调节。这一发现可能有助于更好地理解疾病发展过程中SMA运动神经元的兴奋性。