Veble Gregor, Prosen Tomaz
Physics Department, FMF, University of Ljubljana, Ljubljana, Slovenia.
Phys Rev Lett. 2004 Jan 23;92(3):034101. doi: 10.1103/PhysRevLett.92.034101.
We show that in the classical interaction picture the echo dynamics, namely, the composition of perturbed forward and unperturbed backward Hamiltonian evolution, can be treated as a time-dependent Hamiltonian system. For strongly chaotic (Anosov) systems we derive a cascade of exponential decays for the classical Loschmidt echo, starting with the leading Lyapunov exponent, followed by a sum of the two largest exponents, etc. In the loxodromic case a decay starts with the rate given as twice the largest Lyapunov exponent. For a class of perturbations of symplectic maps the echo dynamics exhibits a drift resulting in a superexponential decay of the Loschmidt echo.
我们表明,在经典相互作用绘景中,回波动力学,即受扰前向和未受扰后向哈密顿演化的组合,可以被视为一个含时哈密顿系统。对于强混沌(阿诺索夫)系统,我们推导了经典洛施密特回波的指数衰减级联,从主导李雅普诺夫指数开始,接着是两个最大指数之和,等等。在斜驶线情形下,衰减以两倍最大李雅普诺夫指数给出的速率开始。对于一类辛映射的微扰,回波动力学呈现出一种漂移,导致洛施密特回波的超指数衰减。