Suppr超能文献

比经典洛施密特回波的李雅普诺夫衰减更快。

Faster than Lyapunov decays of the classical Loschmidt echo.

作者信息

Veble Gregor, Prosen Tomaz

机构信息

Physics Department, FMF, University of Ljubljana, Ljubljana, Slovenia.

出版信息

Phys Rev Lett. 2004 Jan 23;92(3):034101. doi: 10.1103/PhysRevLett.92.034101.

Abstract

We show that in the classical interaction picture the echo dynamics, namely, the composition of perturbed forward and unperturbed backward Hamiltonian evolution, can be treated as a time-dependent Hamiltonian system. For strongly chaotic (Anosov) systems we derive a cascade of exponential decays for the classical Loschmidt echo, starting with the leading Lyapunov exponent, followed by a sum of the two largest exponents, etc. In the loxodromic case a decay starts with the rate given as twice the largest Lyapunov exponent. For a class of perturbations of symplectic maps the echo dynamics exhibits a drift resulting in a superexponential decay of the Loschmidt echo.

摘要

我们表明,在经典相互作用绘景中,回波动力学,即受扰前向和未受扰后向哈密顿演化的组合,可以被视为一个含时哈密顿系统。对于强混沌(阿诺索夫)系统,我们推导了经典洛施密特回波的指数衰减级联,从主导李雅普诺夫指数开始,接着是两个最大指数之和,等等。在斜驶线情形下,衰减以两倍最大李雅普诺夫指数给出的速率开始。对于一类辛映射的微扰,回波动力学呈现出一种漂移,导致洛施密特回波的超指数衰减。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验