Kutilek Victoria D, Sheeter Dennis A, Elder John H, Torbett Bruce E
Department of Molecular and Experimental Medicine (L55), 10550 North Torrey Pines Rd, The Scripps Research Institute, La Jolla, CA 92037, USA.
Curr Drug Targets Infect Disord. 2003 Dec;3(4):295-309. doi: 10.2174/1568005033481079.
A global effort has been undertaken to control human immunodeficiency virus (HIV) though the development of vaccines and pharmacologics. Current FDA approved pharmacological inhibitors target two of the three viral enzymes critical to replication and maturation of infectious viral particles: reverse transcriptase (RT) and protease (Pr). Although combination therapies targeting RT and Pr have significantly reduced AIDS related morbidity and mortality, resistance to individual inhibitors is a growing concern. Currently, there are six protease inhibitors in clinical use. These inhibitors target the active site of protease using peptidomimetic transition state analogs based on natural substrates. However, treatment failures arise as a lack of compliance due to HIV-inhibitor pharmacokinetics, toxicity, and tolerance. This allows reduced HIV-inhibitor pressure, increased viral replication, and the emergence of drug resistant mutations. Continued use of protease inhibitors in the face of incomplete viral suppression may result in HIV-1 escape mutants not only being resistant to the protease inhibitor used, but to all clinically available protease inhibitors. Thus, new broad-based protease inhibitors are needed to control the emerging multi-drug, cross-resistant HIV-1. Moreover, given the emergence of cross-resistant HIV-1, there is a need to target novel protease structural sites to reduce the risk of multi-drug cross-resistance. In this review, we discuss the resistance to protease inhibitors and the rationale for new strategies towards drug design for suppressing protease activity. We focus on the structure and function relationship and the influence that drug resistance mutants exert on the evolution of HIV-1 protease.
通过开发疫苗和药物,全球已展开了控制人类免疫缺陷病毒(HIV)的努力。美国食品药品监督管理局(FDA)目前批准的药物抑制剂针对的是感染性病毒颗粒复制和成熟所必需的三种病毒酶中的两种:逆转录酶(RT)和蛋白酶(Pr)。尽管针对RT和Pr的联合疗法已显著降低了与艾滋病相关的发病率和死亡率,但对个别抑制剂产生耐药性的问题日益受到关注。目前,有六种蛋白酶抑制剂正在临床使用。这些抑制剂基于天然底物,使用拟肽过渡态类似物来靶向蛋白酶的活性位点。然而,由于HIV抑制剂的药代动力学、毒性和耐受性导致患者依从性差,从而出现治疗失败的情况。这使得HIV抑制剂压力降低、病毒复制增加以及耐药突变出现。面对不完全的病毒抑制仍继续使用蛋白酶抑制剂,可能导致HIV-1逃逸突变体不仅对所使用的蛋白酶抑制剂耐药,而且对所有临床可用的蛋白酶抑制剂都耐药。因此,需要新型的广谱蛋白酶抑制剂来控制新出现的对多种药物具有交叉耐药性的HIV-1。此外,鉴于对多种药物具有交叉耐药性的HIV-1的出现,有必要靶向新的蛋白酶结构位点以降低多药交叉耐药的风险。在本综述中,我们讨论了对蛋白酶抑制剂的耐药性以及抑制蛋白酶活性的药物设计新策略的基本原理。我们重点关注结构与功能的关系以及耐药突变体对HIV-1蛋白酶进化的影响。