Byun K Suzie, Beveridge D L
Department of Chemistry, and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459, USA.
Biopolymers. 2004 Feb 15;73(3):369-79. doi: 10.1002/bip.10527.
The specificity of papilloma virus E2 protein-DNA binding depends critically upon the sequence of a region of the DNA not in direct contact with the protein, and represents one of the simplest known examples of indirect readout. A detailed characterization of this system in solution is important to the further investigation hypothesis of a structural code for DNA recognition by regulatory proteins. In the crystalline state, the E2 DNA oligonucleotide sequence, d(ACCGAATTCGGT), exhibits three different structural forms. We report herein studies of the structure of E2 DNA in solution based on a series of molecular dynamics (MD) simulations including counterions and water, utilizing both the canonical and various crystallographic structures as initial points of departure. All MDs converged on a single dynamical structure of d(ACCGAATTCGGT) in solution. The predicted structure is in close accord with two of the three crystal structures, and indicates that a significant kink in the double helix at the central ApT step in the other crystal molecule may be a packing effect. The dynamical fine structure was analyzed on the basis of helicoidal parameters. The calculated curvature in the sequence was found to originate primarily from YPR steps in the regions flanking the central AATT tract. In order to study the role of structural adaptation of the DNA in the binding process, a subsequent simulation on the 16-mer cognate sequence d(CAACCGAATTCGGTTG) was initiated from the crystallographic coordinates of the bound DNA in the crystal structure of the protein DNA complex. MD simulations starting with the protein-bound form relaxed rapidly back to the dynamical structure predicted from the previous simulations on the uncomplexed DNA. The MD results show that the bound form E2 DNA is a dynamically unstable structure in the absence of protein, and arises as a consequence of both structural changes intrinsic to the sequence and induced by the interaction with protein.
乳头瘤病毒E2蛋白与DNA结合的特异性关键取决于DNA中一个不与该蛋白直接接触区域的序列,这是已知最简单的间接识别实例之一。在溶液中对该系统进行详细表征对于进一步研究调控蛋白识别DNA的结构密码假说很重要。在晶体状态下,E2 DNA寡核苷酸序列d(ACCGAATTCGGT)呈现出三种不同的结构形式。我们在此报告基于一系列包含抗衡离子和水的分子动力学(MD)模拟对溶液中E2 DNA结构的研究,将标准结构和各种晶体结构都用作初始出发点。所有MD模拟都收敛于溶液中d(ACCGAATTCGGT)的单一动态结构。预测的结构与三种晶体结构中的两种高度吻合,这表明另一个晶体分子中中央ApT步处双螺旋的明显扭结可能是堆积效应。基于螺旋参数对动态精细结构进行了分析。发现序列中的计算曲率主要源自中央AATT片段侧翼区域的YPR步。为了研究DNA结构适应性在结合过程中的作用,从蛋白质-DNA复合物晶体结构中结合DNA的晶体坐标出发,对16聚体同源序列d(CAACCGAATTCGGTTG)进行了后续模拟。从蛋白质结合形式开始的MD模拟迅速松弛回先前对未复合DNA模拟预测的动态结构。MD结果表明,在没有蛋白质的情况下,结合形式的E2 DNA是一种动态不稳定结构,它是序列固有结构变化以及与蛋白质相互作用诱导的结构变化共同作用的结果。