Falconi M, Santolamazza A, Eliseo T, de Prat-Gay G, Cicero D O, Desideri A
Department of Biology and CIBB (Centro Interdipartimentale di Biostatistica e Bioinformatica), University of Rome Tor Vergata, Italy.
FEBS J. 2007 May;274(9):2385-95. doi: 10.1111/j.1742-4658.2007.05773.x. Epub 2007 Mar 30.
Papillomaviruses are small DNA tumor viruses that infect mammalian hosts, with consequences from benign to cancerous lesions. The Early protein 2 is the master regulator for the virus life cycle, participating in gene transcription, DNA replication, and viral episome migration. All of these functions rely on primary target recognition by its dimeric DNA-binding domain. In this work, we performed molecular dynamics simulations in order to gain insights into the structural dynamics of the DNA-binding domains of two prototypic strains, human papillomavirus strain 16 and the bovine papillomavirus strain 1. The simulations underline different dynamic features in the two proteins. The human papillomavirus strain 16 domain displays a higher flexibility of the beta2-beta3 connecting loop in comparison with the bovine papillomavirus strain 1 domain, with a consequent effect on the DNA-binding helices, and thus on the modulation of DNA recognition. A compact beta-barrel is found in human papillomavirus strain 16, whereas the bovine papillomavirus strain 1 protein is characterized by a loose beta-barrel with a large number of cavities filled by water, which provides great flexibility. The rigidity of the human papillomavirus strain 16 beta-barrel prevents protein deformation, and, as a consequence, deformable spacers are the preferred targets in complex formation. In contrast, in bovine papillomavirus strain 1, a more deformable beta-barrel confers greater adaptability to the protein, allowing the binding of less flexible DNA regions. The flexibility data are confirmed by the experimental NMR S2 values, which are reproduced well by calculation. This feature may provide the protein with an ability to discriminate between spacer sequences. Clearly, the deformability required for the formation of the Early protein 2 C-terminal DNA-binding domain-DNA complexes of various types is based not only on the rigidity of the base sequences in the DNA spacers, but also on the intrinsic deformability properties of each domain.
乳头瘤病毒是感染哺乳动物宿主的小型DNA肿瘤病毒,可导致从良性到癌性病变的各种后果。早期蛋白2是病毒生命周期的主要调节因子,参与基因转录、DNA复制和病毒附加体迁移。所有这些功能都依赖于其二聚体DNA结合结构域对主要靶标的识别。在这项工作中,我们进行了分子动力学模拟,以便深入了解两种原型毒株(人乳头瘤病毒16型和牛乳头瘤病毒1型)DNA结合结构域的结构动力学。模拟结果突显了这两种蛋白质不同的动力学特征。与人乳头瘤病毒16型结构域相比,牛乳头瘤病毒1型结构域的β2-β3连接环具有更高的灵活性,进而对DNA结合螺旋产生影响,从而影响DNA识别的调节。在人乳头瘤病毒16型中发现了一个紧凑的β桶,而牛乳头瘤病毒1型蛋白质的特征是一个松散的β桶,有大量被水填充的空洞,这提供了很大的灵活性。人乳头瘤病毒16型β桶的刚性阻止了蛋白质变形,因此,可变形的间隔序列是复合物形成中的首选靶标。相比之下,在牛乳头瘤病毒1型中,更具可变形性的β桶赋予了蛋白质更大的适应性,使其能够结合不太灵活的DNA区域。灵活性数据得到了实验性核磁共振S2值的证实,计算结果能很好地重现这些值。这一特征可能使该蛋白质具有区分间隔序列的能力。显然,形成各种类型的早期蛋白2 C末端DNA结合结构域-DNA复合物所需的可变形性不仅基于DNA间隔序列中碱基序列的刚性,还基于每个结构域的固有可变形性特性。