Thum Karen E, Shin Michael J, Palenchar Peter M, Kouranov Andrei, Coruzzi Gloria M
Department of Biology, New York University, New York, NY 10003, USA.
Genome Biol. 2004;5(2):R10. doi: 10.1186/gb-2004-5-2-r10. Epub 2004 Jan 27.
Light and carbon are two essential signals influencing plant growth and development. Little is known about how carbon and light signaling pathways intersect or influence one another to affect gene expression.
Microarrays are used to investigate carbon and light signaling interactions at a genome-wide level in Arabidopsis thaliana. A classification system, 'InterAct Class', is used to classify genes on the basis of their expression profiles. InterAct classes and the genes within them are placed into theoretical models describing interactions between carbon and light signaling. Within InterAct classes there are genes regulated by carbon (201 genes), light (77 genes) or through carbon and light interactions (1,247 genes). We determined whether genes involved in specific biological processes are over-represented in the population of genes regulated by carbon and/or light signaling. Of 29 primary functional categories identified by the Munich Information Center for Protein Sequences, five show over-representation of genes regulated by carbon and/or light. Metabolism has the highest representation of genes regulated by carbon and light interactions and includes the secondary functional categories of carbon-containing-compound/carbohydrate metabolism, amino-acid metabolism, lipid metabolism, fatty-acid metabolism and isoprenoid metabolism. Genes that share a similar InterAct class expression profile and are involved in the same biological process are used to identify putative cis elements possibly involved in responses to both carbon and light signals.
The work presented here represents a method to organize and classify microarray datasets, enabling one to investigate signaling interactions and to identify putative cis elements in silico through the analysis of genes that share a similar expression profile and biological function.
光和碳是影响植物生长发育的两个重要信号。关于碳信号通路和光信号通路如何交叉或相互影响以调控基因表达,目前所知甚少。
利用微阵列技术在全基因组水平上研究拟南芥中碳信号和光信号的相互作用。采用一种分类系统“相互作用类别”(InterAct Class),根据基因的表达谱对其进行分类。将相互作用类别及其内部的基因纳入描述碳信号和光信号相互作用的理论模型。在相互作用类别中,有受碳调控的基因(201个)、受光调控的基因(77个)或通过碳与光的相互作用调控的基因(1247个)。我们确定了参与特定生物学过程的基因在受碳信号和/或光信号调控的基因群体中是否过度富集。在慕尼黑蛋白质序列信息中心确定的29个主要功能类别中,有5个类别显示受碳信号和/或光信号调控的基因过度富集。代谢过程中受碳与光相互作用调控的基因占比最高,包括含碳化合物/碳水化合物代谢、氨基酸代谢、脂质代谢、脂肪酸代谢和类异戊二烯代谢等二级功能类别。具有相似相互作用类别表达谱且参与相同生物学过程的基因,用于鉴定可能参与碳信号和光信号响应的假定顺式元件。
本文介绍的工作代表了一种组织和分类微阵列数据集的方法,通过分析具有相似表达谱和生物学功能的基因,能够在计算机上研究信号相互作用并鉴定假定的顺式元件。