van Lipzig Marola M H, ter Laak Antonius M, Jongejan Aldo, Vermeulen Nico P E, Wamelink Mirjam, Geerke Daan, Meerman John H N
Leiden/Amsterdam Center for Drug Research, Division of Molecular Toxicology and Division of Molecular Pharmacology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
J Med Chem. 2004 Feb 12;47(4):1018-30. doi: 10.1021/jm0309607.
Exposure to environmental estrogens has been proposed as a risk factor for disruption of reproductive development and tumorigenesis of humans and wildlife (McLachlan, J. A.; Korach, K. S.; Newbold, R. R.; Degen, G. H. Diethylstilbestrol and other estrogens in the environment. Fundam. Appl. Toxicol. 1984, 4, 686-691). In recent years, many structurally diverse environmental compounds have been identified as estrogens. A reliable computational method for determining estrogen receptor (ER) binding affinity is of great value for the prediction of estrogenic activity of such compounds and their metabolites. In the presented study, a computational model was developed for prediction of binding affinities of ligands to the ERalpha isoform, using MD simulations in combination with the linear interaction energy (LIE) approach. The linear interaction energy approximation was first described by Aqvist et al. (Aqvist, J.; Medina, C.; Samuelsson, J. E. A new method for predicting binding affinity in computer-aided drug design. Protein Eng. 1994, 7, 385-391) and relies on the assumption that the binding free energy (DeltaG) depends linearly on changes in the van der Waals and electrostatic energy of the system. In the present study, MD simulations of ligands in the ERalpha ligand binding domain (LBD) (Shiau, A. K.; Barstad, D.; Loria, P. M.; Cheng, L.; Kushner, P. J.; Agard, D. A.; Greene, G. L. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 1998, 95, 927-937), as well as ligands free in water, were carried out using the Amber 6.0 force field (http://amber.scripps.edu/). Contrary to previous LIE methods, we took into account every possible orientation of the ligands in the LBD and weighted the contribution of each orientation to the total binding affinity according to a Boltzman distribution. The training set (n = 19) contained estradiol (E2), the synthetic estrogens diethylstilbestrol (DES) and 11beta-chloroethylestradiol (E2-Cl), 16alpha-hydroxy-E2 (estriol, EST), the phytoestrogens genistein (GEN), 8-prenylnaringenin (8PN), and zearalenon (ZEA), four derivatives of benz[a]antracene-3,9-diol, and eight estrogenic monohydroxylated PAH metabolites. We obtained an excellent linear correlation (r(2) = 0.94) between experimental (competitive ER binding assay) and calculated binding energies, with K(d) values ranging from 0.15 mM to 30 pM, a 5 000 000-fold difference in binding affinity. Subsequently, a test set (n = 12) was used to examine the predictive value of our model. This set consisted of the synthetic estrogen 5,11-cis-diethyl-5,6,11,12-tetrahydrochrysene-2,8-diol (THC), daidzein (DAI), equol (EQU) and apigenin (API), chlordecone (KEP), progesterone (PRG), several mono- and dihydroxylated PAH metabolites, and two brominated biphenyls. The predicted binding affinities of these estrogenic compounds were in very good agreement with the experimental values (average deviation of 0.61 +/- 0.4 kcal/mol). In conclusion, our LIE model provides a very good method for prediction of absolute ligand binding affinities, as well as binding orientation of ligands.
环境雌激素暴露被认为是人类和野生动物生殖发育紊乱及肿瘤发生的一个风险因素(麦克拉克伦,J. A.;科拉奇,K. S.;纽博尔德,R. R.;德根,G. H. 环境中的己烯雌酚及其他雌激素。基础与应用毒理学。1984年,4卷,686 - 691页)。近年来,许多结构多样的环境化合物已被鉴定为雌激素。一种可靠的计算方法来确定雌激素受体(ER)结合亲和力,对于预测此类化合物及其代谢物的雌激素活性具有重要价值。在本研究中,结合分子动力学(MD)模拟和线性相互作用能(LIE)方法,开发了一个计算模型来预测配体与ERα亚型的结合亲和力。线性相互作用能近似法最早由阿奎斯特等人描述(阿奎斯特,J.;梅迪纳,C.;塞缪尔松,J. E. 计算机辅助药物设计中预测结合亲和力的一种新方法。蛋白质工程。1994年,7卷,385 - 391页),该方法基于结合自由能(ΔG)线性依赖于系统范德华能和静电能变化的假设。在本研究中,使用Amber 6.0力场(http://amber.scripps.edu/)对ERα配体结合结构域(LBD)(肖,A. K.;巴斯塔德,D.;洛里亚,P. M.;程,L.;库什纳,P. J.;阿加德,D. A.;格林,G. L. 雌激素受体/共激活因子识别的结构基础及他莫昔芬对这种相互作用的拮抗作用。细胞。1998年,95卷,927 - 937页)中的配体以及水中游离的配体进行了分子动力学模拟。与之前的LIE方法不同,我们考虑了配体在LBD中的每一种可能取向,并根据玻尔兹曼分布对每种取向对总结合亲和力的贡献进行加权。训练集(n = 19)包含雌二醇(E2)、合成雌激素己烯雌酚(DES)和11β - 氯乙基雌二醇(E2 - Cl)、16α - 羟基 - E2(雌三醇,EST)、植物雌激素染料木黄酮(GEN)、8 - 异戊烯基柚皮素(8PN)和玉米赤霉烯酮(ZEA)、苯并[a]蒽 - 3,9 - 二醇的四种衍生物以及八种雌激素性单羟基化多环芳烃代谢物。我们在实验(竞争性ER结合测定)和计算得到的结合能之间获得了极好的线性相关性(r² = 0.94),解离常数(Kd)值范围从0.15 mM到30 pM,结合亲和力相差5000000倍。随后,使用一个测试集(n = 12)来检验我们模型的预测价值。该测试集包括合成雌激素5,11 - 顺式 - 二乙基 - 5,6,11,12 - 四氢并四苯 - 2,8 - 二醇(THC)、大豆苷元(DAI)、雌马酚(EQU)和芹菜素(API)、十氯酮(KEP)、孕酮(PRG)、几种单羟基化和二羟基化多环芳烃代谢物以及两种溴代联苯。这些雌激素化合物的预测结合亲和力与实验值非常吻合(平均偏差为0.61±0.4千卡/摩尔)。总之,我们的LIE模型为预测绝对配体结合亲和力以及配体的结合取向提供了一种非常好的方法。