Suppr超能文献

SARS-CoV-2 变体的结构生物信息学分析显示,与野生型参考相比,奥密克戎 B.1.1.529 刺突 RBD 与 hACE2 受体的结合亲和力更高。

Structural bioinformatics analysis of SARS-CoV-2 variants reveals higher hACE2 receptor binding affinity for Omicron B.1.1.529 spike RBD compared to wild type reference.

机构信息

Innophore GmbH, 8010, Graz, Austria.

Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria.

出版信息

Sci Rep. 2022 Aug 25;12(1):14534. doi: 10.1038/s41598-022-18507-y.

Abstract

To date, more than 263 million people have been infected with SARS-CoV-2 during the COVID-19 pandemic. In many countries, the global spread occurred in multiple pandemic waves characterized by the emergence of new SARS-CoV-2 variants. Here we report a sequence and structural-bioinformatics analysis to estimate the effects of amino acid substitutions on the affinity of the SARS-CoV-2 spike receptor binding domain (RBD) to the human receptor hACE2. This is done through qualitative electrostatics and hydrophobicity analysis as well as molecular dynamics simulations used to develop a high-precision empirical scoring function (ESF) closely related to the linear interaction energy method and calibrated on a large set of experimental binding energies. For the latest variant of concern (VOC), B.1.1.529 Omicron, our Halo difference point cloud studies reveal the largest impact on the RBD binding interface compared to all other VOC. Moreover, according to our ESF model, Omicron achieves a much higher ACE2 binding affinity than the wild type and, in particular, the highest among all VOCs except Alpha and thus requires special attention and monitoring.

摘要

截至目前,在 COVID-19 大流行期间,已有超过 2.63 亿人感染了 SARS-CoV-2。在许多国家,该病毒在多个具有新 SARS-CoV-2 变体出现特征的大流行浪潮中传播。在此,我们报告了一项序列和结构生物信息学分析,以估计 SARS-CoV-2 刺突受体结合域(RBD)氨基酸取代对与人类受体 hACE2 亲和力的影响。这是通过定性静电和疏水性分析以及分子动力学模拟来实现的,这些模拟用于开发与线性相互作用能方法密切相关的高精度经验评分函数(ESF),并经过大量实验结合能进行校准。对于最新的关注变体(VOC)B.1.1.529 奥密克戎(Omicron),我们的 Halo 差分点云研究表明,与所有其他 VOC 相比,它对 RBD 结合界面的影响最大。此外,根据我们的 ESF 模型,奥密克戎(Omicron)与野生型相比实现了更高的 ACE2 结合亲和力,特别是在除 Alpha 之外的所有 VOC 中最高,因此需要特别关注和监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8103/9411167/2089a1a28462/41598_2022_18507_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验