Suppr超能文献

二苯基碘鎓对膜结合甲烷单加氧酶和氨单加氧酶的抑制作用:对电子传递的影响

Inhibition of membrane-bound methane monooxygenase and ammonia monooxygenase by diphenyliodonium: implications for electron transfer.

作者信息

Shiemke Andrew K, Arp Daniel J, Sayavedra-Soto Luis A

机构信息

Department of Biochemistry and Molecular Pharmacology, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9142, USA.

出版信息

J Bacteriol. 2004 Feb;186(4):928-37. doi: 10.1128/JB.186.4.928-937.2004.

Abstract

Diphenyliodonium (DPI) is known to irreversibly inactivate flavoproteins. We have found that DPI inhibits both membrane-bound methane monooxygenase (pMMO) from Methylococcus capsulatus and ammonia monooxygenase (AMO) of Nitrosomonas europaea. The effect of DPI on NADH-dependent pMMO activity in vitro is ascribed to inactivation of NDH-2, a flavoprotein which we proposed catalyzes reduction of the quinone pool by NADH. DPI is a potent inhibitor of type 2 NADH:quinone oxidoreductase (NDH-2), with 50% inhibition occurring at approximately 5 micro M. Inhibition of NDH-2 is irreversible and requires NADH. Inhibition of NADH-dependent pMMO activity by DPI in vitro is concomitant with inhibition of NDH-2, consistent with our proposal that NDH-2 mediates reduction of pMMO. Unexpectedly, DPI also inhibits pMMO activity driven by exogenous hydroquinols, but with approximately 100 micro M DPI required to achieve 50% inhibition. Similar concentrations of DPI are required to inhibit formate-, formaldehyde-, and hydroquinol-driven pMMO activities in whole cells. The pMMO activity in DPI-treated cells greatly exceeds the activity of NDH-2 or pMMO in membranes isolated from those cells, suggesting that electron transfer from formate to pMMO in vivo can occur independent of NADH and NDH-2. AMO activity, which is known to be independent of NADH, is affected by DPI in a manner analogous to pMMO in vivo: approximately 100 micro M is required for 50% inhibition regardless of the nature of the reducing agent. DPI does not affect hydroxylamine oxidoreductase activity and does not require AMO turnover to exert its inhibitory effect. Implications of these data for the electron transfer pathway from the quinone pool to pMMO and AMO are discussed.

摘要

已知二苯基碘化鎓(DPI)可不可逆地使黄素蛋白失活。我们发现DPI既能抑制来自荚膜甲基球菌的膜结合型甲烷单加氧酶(pMMO),也能抑制欧洲亚硝化单胞菌的氨单加氧酶(AMO)。DPI对体外依赖NADH的pMMO活性的影响归因于NDH - 2的失活,NDH - 2是一种黄素蛋白,我们认为它催化NADH对醌池的还原。DPI是2型NADH:醌氧化还原酶(NDH - 2)的强效抑制剂,在约5微摩尔时出现50%的抑制率。对NDH - 2的抑制是不可逆的,且需要NADH。DPI在体外对依赖NADH的pMMO活性的抑制与对NDH - 2的抑制同时发生,这与我们提出的NDH - 2介导pMMO还原的观点一致。出乎意料的是,DPI还能抑制由外源对苯二酚驱动的pMMO活性,但达到50%抑制率大约需要100微摩尔DPI。在全细胞中,抑制甲酸、甲醛和对苯二酚驱动的pMMO活性也需要类似浓度的DPI。经DPI处理的细胞中的pMMO活性大大超过从这些细胞中分离出的膜中NDH - 2或pMMO的活性,这表明在体内从甲酸到pMMO的电子传递可以独立于NADH和NDH - 2发生。已知与NADH无关的AMO活性,在体内受DPI影响的方式与pMMO类似:无论还原剂的性质如何,达到50%抑制率大约需要100微摩尔。DPI不影响羟胺氧化还原酶活性且不需要AMO周转来发挥其抑制作用。讨论了这些数据对从醌池到pMMO和AMO的电子传递途径的意义。

相似文献

5
Inhibition of Ammonia Monooxygenase from Ammonia-Oxidizing Archaea by Linear and Aromatic Alkynes.
Appl Environ Microbiol. 2020 Apr 17;86(9). doi: 10.1128/AEM.02388-19.
7
Bacteriohemerythrin bolsters the activity of the particulate methane monooxygenase (pMMO) in Methylococcus capsulatus (Bath).
J Inorg Biochem. 2012 Jun;111:10-7. doi: 10.1016/j.jinorgbio.2012.02.019. Epub 2012 Mar 3.
8
Effects of zinc on particulate methane monooxygenase activity and structure.
J Biol Chem. 2014 Aug 1;289(31):21782-94. doi: 10.1074/jbc.M114.581363. Epub 2014 Jun 18.

引用本文的文献

1
The model structure of the copper-dependent ammonia monooxygenase.
J Biol Inorg Chem. 2020 Oct;25(7):995-1007. doi: 10.1007/s00775-020-01820-0. Epub 2020 Sep 14.
2
SAR Analysis of Small Molecules Interfering with Energy-Metabolism in .
Pharmaceuticals (Basel). 2020 Aug 31;13(9):227. doi: 10.3390/ph13090227.
4
Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion.
J Am Chem Soc. 2016 Aug 3;138(30):9327-40. doi: 10.1021/jacs.6b04568. Epub 2016 Jul 19.
5
Enzymatic oxidation of methane.
Biochemistry. 2015 Apr 14;54(14):2283-94. doi: 10.1021/acs.biochem.5b00198. Epub 2015 Apr 1.
6
Structure and protein-protein interactions of methanol dehydrogenase from Methylococcus capsulatus (Bath).
Biochemistry. 2014 Oct 7;53(39):6211-9. doi: 10.1021/bi500850j. Epub 2014 Sep 19.
7
Effects of zinc on particulate methane monooxygenase activity and structure.
J Biol Chem. 2014 Aug 1;289(31):21782-94. doi: 10.1074/jbc.M114.581363. Epub 2014 Jun 18.
9
Architecture and active site of particulate methane monooxygenase.
Crit Rev Biochem Mol Biol. 2012 Nov-Dec;47(6):483-92. doi: 10.3109/10409238.2012.697865. Epub 2012 Jun 23.
10
Role of a Fur homolog in iron metabolism in Nitrosomonas europaea.
BMC Microbiol. 2011 Feb 21;11:37. doi: 10.1186/1471-2180-11-37.

本文引用的文献

1
Transformations of Aromatic Compounds by Nitrosomonas europaea.
Appl Environ Microbiol. 1994 Jun;60(6):1914-20. doi: 10.1128/aem.60.6.1914-1920.1994.
2
Mechanism-Based Inactivation of Ammonia Monooxygenase in Nitrosomonas europaea by Allylsulfide.
Appl Environ Microbiol. 1993 Nov;59(11):3728-35. doi: 10.1128/aem.59.11.3728-3735.1993.
3
Interaction of Ammonia Monooxygenase from Nitrosomonas europaea with Alkanes, Alkenes, and Alkynes.
Appl Environ Microbiol. 1988 Dec;54(12):3187-90. doi: 10.1128/aem.54.12.3187-3190.1988.
8
Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea.
Arch Microbiol. 2002 Oct;178(4):250-5. doi: 10.1007/s00203-002-0452-0. Epub 2002 Jun 27.
9
Reaction of reduced flavins and flavoproteins with diphenyliodonium chloride.
J Biol Chem. 2002 Nov 1;277(44):41507-16. doi: 10.1074/jbc.M205432200. Epub 2002 Aug 16.
10
Dioxygen Activation by Enzymes Containing Binuclear Non-Heme Iron Clusters.
Chem Rev. 1996 Nov 7;96(7):2625-2658. doi: 10.1021/cr9500489.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验