Suppr超能文献

在乳酸乳球菌中,精氨酸代谢的调控同时需要ArgR和AhrC。

ArgR and AhrC are both required for regulation of arginine metabolism in Lactococcus lactis.

作者信息

Larsen Rasmus, Buist Girbe, Kuipers Oscar P, Kok Jan

机构信息

Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands.

出版信息

J Bacteriol. 2004 Feb;186(4):1147-57. doi: 10.1128/JB.186.4.1147-1157.2004.

Abstract

The DNA binding proteins ArgR and AhrC are essential for regulation of arginine metabolism in Escherichia coli and Bacillus subtilis, respectively. A unique property of these regulators is that they form hexameric protein complexes, mediating repression of arginine biosynthetic pathways as well as activation of arginine catabolic pathways. The gltS-argE operon of Lactococcus lactis encodes a putative glutamate or arginine transport protein and acetylornithine deacetylase, which catalyzes an important step in the arginine biosynthesis pathway. By random integration knockout screening we found that derepression mutants had ISS1 integrations in, among others, argR and ahrC. Single as well as double regulator deletion mutants were constructed from Lactococcus lactis subsp. cremoris MG1363. The three arginine biosynthetic operons argCJDBF, argGH, and gltS-argE were shown to be repressed by the products of argR and ahrC. Furthermore, the arginine catabolic arcABD1C1C2TD2 operon was activated by the product of ahrC but not by that of argR. Expression from the promoter of the argCJDBF operon reached similar levels in the single mutants and in the double mutant, suggesting that the regulators are interdependent and not able to complement each other. At the same time they also appear to have different functions, as only AhrC is involved in activation of arginine catabolism. This is the first study where two homologous arginine regulators are shown to be involved in arginine regulation in a prokaryote, representing an unusual mechanism of regulation.

摘要

DNA结合蛋白ArgR和AhrC分别对大肠杆菌和枯草芽孢杆菌中精氨酸代谢的调控至关重要。这些调节因子的一个独特特性是它们形成六聚体蛋白复合物,介导精氨酸生物合成途径的抑制以及精氨酸分解代谢途径的激活。乳酸乳球菌的gltS-argE操纵子编码一种假定的谷氨酸或精氨酸转运蛋白和乙酰鸟氨酸脱乙酰酶,后者催化精氨酸生物合成途径中的一个重要步骤。通过随机整合敲除筛选,我们发现去阻遏突变体在argR和ahrC等基因中有ISS1整合。从乳酸乳球菌亚种cremoris MG1363构建了单调节因子缺失突变体和双调节因子缺失突变体。三个精氨酸生物合成操纵子argCJDBF、argGH和gltS-argE被证明受到argR和ahrC产物的抑制。此外,精氨酸分解代谢的arcABD1C1C2TD2操纵子被ahrC的产物激活,但不被argR的产物激活。argCJDBF操纵子启动子的表达在单突变体和双突变体中达到相似水平,这表明调节因子相互依赖,不能相互补充。与此同时,它们似乎也具有不同的功能,因为只有AhrC参与精氨酸分解代谢的激活。这是第一项表明两种同源精氨酸调节因子参与原核生物精氨酸调节的研究,代表了一种不同寻常的调节机制。

相似文献

1
ArgR and AhrC are both required for regulation of arginine metabolism in Lactococcus lactis.
J Bacteriol. 2004 Feb;186(4):1147-57. doi: 10.1128/JB.186.4.1147-1157.2004.
2
Interaction between ArgR and AhrC controls regulation of arginine metabolism in Lactococcus lactis.
J Biol Chem. 2005 May 13;280(19):19319-30. doi: 10.1074/jbc.M413983200. Epub 2005 Mar 4.
3
Transcriptome analysis of the Lactococcus lactis ArgR and AhrC regulons.
Appl Environ Microbiol. 2008 Aug;74(15):4768-71. doi: 10.1128/AEM.00117-08. Epub 2008 Jun 6.
9
Probing activation of the prokaryotic arginine transcriptional regulator using chimeric proteins.
J Mol Biol. 1999 Jun 18;289(4):707-27. doi: 10.1006/jmbi.1999.2790.

引用本文的文献

1
Arginine at the host-pathogen interface.
Infect Immun. 2025 Aug 12;93(8):e0061224. doi: 10.1128/iai.00612-24. Epub 2025 Jul 3.
2
Regulatory dynamics of arginine metabolism in Staphylococcus aureus.
Biochem Soc Trans. 2024 Dec 19;52(6):2513-2523. doi: 10.1042/BST20240710.
3
Glutamatedependent arginine biosynthesis requires the inactivation of , and in .
J Bacteriol. 2024 Feb 22;206(2):e0033723. doi: 10.1128/jb.00337-23. Epub 2024 Feb 1.
8
A Combination of Genomics, Transcriptomics, and Genetics Provides Insights into the Mineral Weathering Phenotype of Pseudomonas azotoformans F77.
Appl Environ Microbiol. 2021 Nov 24;87(24):e0155221. doi: 10.1128/AEM.01552-21. Epub 2021 Sep 29.
9
Adaptive Evolution of Lactococcus Lactis to Thermal and Oxidative Stress Increases Biomass and Nisin Production.
Appl Biochem Biotechnol. 2021 Nov;193(11):3425-3441. doi: 10.1007/s12010-021-03609-6. Epub 2021 Jul 1.
10
The DEAD-box RNA helicase CshA is required for fatty acid homeostasis in Staphylococcus aureus.
PLoS Genet. 2020 Jul 30;16(7):e1008779. doi: 10.1371/journal.pgen.1008779. eCollection 2020 Jul.

本文引用的文献

1
Improved medium for lactic streptococci and their bacteriophages.
Appl Microbiol. 1975 Jun;29(6):807-13. doi: 10.1128/am.29.6.807-813.1975.
4
Identification of the binding sites of regulatory proteins in bacterial genomes.
Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11772-7. doi: 10.1073/pnas.112341999. Epub 2002 Aug 14.
5
Regulation of the metC-cysK operon, involved in sulfur metabolism in Lactococcus lactis.
J Bacteriol. 2002 Jan;184(1):82-90. doi: 10.1128/JB.184.1.82-90.2002.
7
Conservation of the binding site for the arginine repressor in all bacterial lineages.
Genome Biol. 2001;2(4):RESEARCH0013. doi: 10.1186/gb-2001-2-4-research0013. Epub 2001 Mar 22.
8
Regulation of anaerobic arginine catabolism in Bacillus licheniformis by a protein of the Crp/Fnr family.
FEMS Microbiol Lett. 2000 Oct 15;191(2):227-34. doi: 10.1111/j.1574-6968.2000.tb09344.x.
9
Six putative two-component regulatory systems isolated from Lactococcus lactis subsp. cremoris MG1363.
Microbiology (Reading). 2000 Apr;146 ( Pt 4):935-947. doi: 10.1099/00221287-146-4-935.
10
The development of TnNuc and its use for the isolation of novel secretion signals in Lactococcus lactis.
Gene. 2000 Jan 25;242(1-2):347-56. doi: 10.1016/s0378-1119(99)00530-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验