Suppr超能文献

Myocardial hemodynamics, physiology, and perfusion with an axial flow left ventricular assist device in the calf.

作者信息

Tuzun Egemen, Eya Kazuhiro, Chee Hyun Keun, Conger Jeff L, Bruno Natalie K, Frazier O H, Kadipasaoglu Kamuran A

机构信息

Cardiovascular Research Laboratories, Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, Texas 77225-0345, USA.

出版信息

ASAIO J. 2004 Jan-Feb;50(1):47-53. doi: 10.1097/01.mat.0000104819.23235.2f.

Abstract

The Jarvik 2000 axial flow left ventricular assist device (LVAD) is used clinically as a bridge to transplantation or as destination therapy in end-stage heart disease. The effect of the pump's continuous flow output on myocardial and end-organ blood flow has not been studied experimentally. To address this, the Jarvik 2000 pump was implanted in eight calves and then operated at speeds ranging from 8,000 to 12,000 rpm. Micromanometry, echocardiography, and blood oxygenation measurements were used to assess changes in hemodynamics, cardiac dimensions, and myocardial metabolism, respectively, at different speeds as compared with baseline (pump off, 0 rpm) in this experimental model. Microsphere studies were performed to assess the effects on heart, kidney, and brain perfusion at different speeds. The Jarvik 2000 pump unloaded the left ventricle and reduced end-diastolic pressures and left ventricular dimensions, particularly at higher pump speeds. The ratio of myocardial oxygen consumption to coronary blood flow and the ratio of subendocardial to subepicardial blood flow remained constant. Optimal adjustment of pump speed and volume status allowed opening of the aortic valve and contribution of the native left ventricle to cardiac output, even at the maximum pump speed. Neither brain nor kidney microcirculation was adversely affected at any pump speed. We conclude that the Jarvik 2000 pump adequately unloads the left ventricle without compromising myocardial metabolism or end-organ perfusion.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验