Michel François J, Robillard Julie M, Trudeau Louis-Eric
Département de Pharmacologie, Faculté de Médecine, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada.
J Physiol. 2004 Apr 15;556(Pt 2):429-45. doi: 10.1113/jphysiol.2003.057737. Epub 2004 Feb 6.
Central dopamine neurones are involved in regulating cognitive and motor processes. Most of these neurones are located in the ventral mesencephalon where they receive abundant intrinsic and extrinsic GABAergic input. Cholinergic neurones, originating from mesopontine nuclei, project profusely in the mesencephalon where they preferentially synapse onto local GABAergic neurones. The physiological role of this cholinergic innervation of GABAergic neurones remains to be determined, but these observations raise the hypothesis that ACh may regulate dopamine neurones indirectly through GABAergic interneurones. Using a mesencephalic primary culture model, we studied the impact of cholinergic agonists on mesencephalic GABAergic neurones. ACh increased the frequency of spontaneous IPSCs (151 +/- 49%). Selective activation of muscarinic receptors increased the firing rate of isolated GABAergic neurones by 67 +/- 13%. The enhancement in firing rate was Ca(2+) dependent since inclusion of BAPTA in the pipette blocked it, actually revealing a decrease in firing rate accompanied by membrane hyperpolarization. This inhibitory action was prevented by tertiapin, a blocker of GIRK-type K(+) channels. In addition to its excitatory somatodendritic effect, activation of muscarinic receptors also acted presynaptically, inhibiting the amplitude of unitary GABAergic synaptic currents. Both the enhancement in spontaneous IPSC frequency and presynaptic inhibition were abolished by 4-DAMP (100 nm), a preferential M3 muscarinic receptor antagonist. The presence of M3-like receptors on mesencephalic GABAergic neurones was confirmed by immunocytochemistry. Taken together, these results demonstrate that mesencephalic GABAergic neurones can be regulated directly through muscarinic receptors. Our findings provide new data that should be helpful in better understanding the influence of local GABAergic neurones during cholinergic activation of mesencephalic circuits.
中枢多巴胺能神经元参与调节认知和运动过程。这些神经元大多位于中脑腹侧,在那里它们接受丰富的内在和外在GABA能输入。起源于脑桥中核的胆碱能神经元大量投射到中脑,它们优先与局部GABA能神经元形成突触。这种对GABA能神经元的胆碱能神经支配的生理作用尚待确定,但这些观察结果提出了一种假说,即乙酰胆碱(ACh)可能通过GABA能中间神经元间接调节多巴胺能神经元。我们使用中脑原代培养模型,研究了胆碱能激动剂对中脑GABA能神经元的影响。ACh增加了自发性抑制性突触后电流(IPSCs)的频率(151±49%)。毒蕈碱受体的选择性激活使分离的GABA能神经元的放电频率增加了67±13%。放电频率的增加依赖于Ca(2+),因为在移液管中加入BAPTA可阻断这种增加,实际上显示出放电频率降低并伴有膜超极化。这种抑制作用可被GIRK型钾通道阻滞剂tertiapin阻断。除了其兴奋胞体树突的作用外,毒蕈碱受体的激活还在突触前起作用,抑制单一GABA能突触电流的幅度。4-DAMP(100 nM),一种优先的M3毒蕈碱受体拮抗剂,消除了自发性IPSC频率的增加和突触前抑制。免疫细胞化学证实了中脑GABA能神经元上存在M3样受体。综上所述,这些结果表明中脑GABA能神经元可通过毒蕈碱受体直接调节。我们的发现提供了新的数据,有助于更好地理解中脑回路胆碱能激活过程中局部GABA能神经元的影响。