Bakhmutova Ekaterina V, Bakhmutov Vladimir I, Belkova Natalia V, Besora Maria, Epstein Lina M, Lledós Agustí, Nikonov Georgii I, Shubina Elena S, Tomàs Jaume, Vorontsov Eugenii V
Chemistry Department, Moscow State University, Vorob'evy Gory, 119992 Moscow, Russia.
Chemistry. 2004 Feb 6;10(3):661-71. doi: 10.1002/chem.200305244.
The interaction of [NbCp(2)H(3)] with fluorinated alcohols to give dihydrogen-bonded complexes was studied by a combination of IR, NMR and DFT methods. IR spectra were examined in the range from 200-295 K, affording a clear picture of dihydrogen-bond formation when [NbCp(2)H(3)]/HOR(f) mixtures (HOR(f) = hexafluoroisopropanol (HFIP) or perfluoro-tert-butanol (PFTB)) were quickly cooled to 200 K. Through examination of the OH region, the dihydrogen-bond energetics were determined to be 4.5+/-0.3 kcal mol(-1) for TFE (TFE = trifluoroethanol) and 5.7+/-0.3 kcal mol(-1) for HFIP. (1)H NMR studies of solutions of [NbCp(2)H(2)(B)H(A)] and HFIP in [D(8)]toluene revealed high-field shifts of the hydrides H(A) and H(B), characteristic of dihydrogen-bond formation, upon addition of alcohol. The magnitude of signal shifts and T(1) relaxation time measurements show preferential coordination of the alcohol to the central hydride H(A), but are also consistent with a bifurcated character of the dihydrogen bonding. Estimations of hydride-proton distances based on T(1) data are in good accord with the results of DFT calculations. DFT calculations for the interaction of [NbCp(2)H(3)] with a series of non-fluorinated (MeOH, CH(3)COOH) and fluorinated (CF(3)OH, TFE, HFIP, PFTB and CF(3)COOH) proton donors of different strengths showed dihydrogen-bond formation, with binding energies ranging from -5.7 to -12.3 kcal mol(-1), depending on the proton donor strength. Coordination of proton donors occurs both to the central and to the lateral hydrides of [NbCp(2)H(3)], the former interaction being of bifurcated type and energetically slightly more favourable. In the case of the strong acid H(3)O(+), the proton transfer occurs without any barrier, and no dihydrogen-bonded intermediates are found. Proton transfer to [NbCp(2)H(3)] gives bis(dihydrogen) NbCp(2)(eta(2)-H(2))(2) and dihydride(dihydrogen) complexes NbCp(2)(H)(2)(eta(2)-H(2)) (with lateral hydrides and central dihydrogen), the former product being slightly more stable. When two molecules of TFA were included in the calculations, in addition to the dihydrogen-bonded adduct, an ionic pair formed by the cationic bis(dihydrogen) complex NbCp(2)(eta(2)-H(2))(2) and the homoconjugated anion pair (CF(3)COO...H...OOCCF(3))(-) was found as a minimum. It is very likely that these ionic pairs may be intermediates in the H/D exchange between the hydride ligands and the OD group observed with the more acidic alcohols in the NMR studies.
采用红外光谱(IR)、核磁共振(NMR)和密度泛函理论(DFT)相结合的方法,研究了[NbCp₂H₃]与含氟醇形成双氢键配合物的相互作用。在200 - 295 K范围内对红外光谱进行了检测,当[NbCp₂H₃]/HOR(f)混合物(HOR(f) = 六氟异丙醇(HFIP)或全氟叔丁醇(PFTB))快速冷却至200 K时,清晰呈现了双氢键的形成情况。通过对OH区域的检测,确定TFE(TFE = 三氟乙醇)的双氢键能量为4.5±0.3 kcal mol⁻¹,HFIP的双氢键能量为5.7±0.3 kcal mol⁻¹。对[NbCp₂H₂(B)H(A)]与HFIP在[D₈]甲苯溶液中的¹H NMR研究表明,加入醇后,氢化物H(A)和H(B)出现高场位移,这是双氢键形成的特征。信号位移的大小和T₁弛豫时间测量结果表明,醇优先与中心氢化物H(A)配位,但也与双氢键的分叉特征一致。基于T₁数据对氢化物 - 质子距离的估算与DFT计算结果吻合良好。对[NbCp₂H₃]与一系列不同强度的非氟化(甲醇(MeOH)、乙酸(CH₃COOH))和氟化(三氟甲醇(CF₃OH)、TFE、HFIP、PFTB和三氟乙酸(CF₃COOH))质子供体相互作用的DFT计算表明形成了双氢键,结合能范围为 - 5.7至 - 12.3 kcal mol⁻¹,这取决于质子供体的强度。质子供体与[NbCp₂H₃]的中心氢化物和侧向氢化物均发生配位,前者的相互作用为分叉型,能量上稍占优势。在强酸H₃O⁺的情况下,质子转移没有任何势垒,未发现双氢键中间体。质子转移至[NbCp₂H₃]生成双(二氢)[NbCp₂(η² - H₂)₂]⁺和二氢化物(二氢)配合物[NbCp₂(H)₂(η² - H₂)]⁺(具有侧向氢化物和中心二氢),前一种产物稍稳定。当计算中包含两个三氟乙酸(TFA)分子时,除了双氢键加合物外,还发现由阳离子双(二氢)配合物[NbCp₂(η² - H₂)₂]⁺和同共轭阴离子对(CF₃COO...H...OOCCF₃)⁻形成的离子对为能量最低点。在NMR研究中,很可能这些离子对是氢化物配体与更酸性醇中的OD基团之间H/D交换的中间体。