Beaumont Carole
Inserm U. 409, Faculté de médecine Xavier Bichat, BP 416, 16, rue Henri Huchard, 75870 Paris 18, France.
Med Sci (Paris). 2004 Jan;20(1):68-72. doi: 10.1051/medsci/200420168.
Iron metabolism in mammals requires a complex and tightly regulated molecular network. The classical view of iron metabolism has been challenged over the past ten years by the discovery of several new proteins, mostly Fe (II) iron transporters, enzymes with ferro-oxydase (hephaestin or ceruloplasmin) or ferri-reductase (Dcytb) activity or regulatory proteins like HFE and hepcidin. Furthermore, a new transferrin receptor has been identified, mostly expressed in the liver, and the ability of the megalin-cubilin complex to internalise the urinary Fe (III)-transferrin complex in renal tubular cells has been highlighted. Intestinal iron absorption by mature duodenal enterocytes requires Fe (III) iron reduction by Dcytb and Fe (II) iron transport through apical membranes by the iron transporter Nramp2/DMT1. This is followed by iron transfer to the baso-lateral side, export by ferroportin and oxidation into Fe (III) by hephaestin prior to binding to plasma transferrin. Macrophages play also an important role in iron delivery to plasma transferrin through phagocytosis of senescent red blood cell, heme catabolism and recycling of iron. Iron egress from macrophages is probably also mediated by ferroportin and patients with heterozygous ferroportin mutations develop progressive iron overload in liver macrophages. Iron homeostasis at the level of the organism is based on a tight control of intestinal iron absorption and efficient recycling of iron by macrophages. Signalling between iron stores in the liver and both duodenal enterocytes and macrophages is mediated by hepcidin, a circulating peptide synthesized by the liver and secreted into the plasma. Hepcidin expression is stimulated in response to iron overload or inflammation, and down regulated by anemia and hypoxia. Hepcidin deficiency leads to iron overload and hepcidin overexpression to anemia. Hepcidin synthesis in response to iron overload seems to be controlled by the HFE molecule. Patients with hereditary hemochromatosis due to HFE mutation have impaired hepcidin synthesis and forced expression of an hepcidin transgene in HFE deficient mice prevents iron overload. These results open new therapeutic perspectives, especially with the possibility to use hepcidin or antagonists for the treatment of iron overload disorders.
哺乳动物的铁代谢需要一个复杂且严格调控的分子网络。在过去十年中,铁代谢的经典观点受到了挑战,这是由于发现了几种新蛋白质,其中大多数是亚铁(Fe(II))转运蛋白、具有铁氧化酶(血色素沉着蛋白或铜蓝蛋白)或铁还原酶(十二指肠细胞色素b)活性的酶,以及像遗传性血色素沉着症蛋白(HFE)和铁调素这样的调节蛋白。此外,还鉴定出了一种主要在肝脏中表达的新转铁蛋白受体,并且强调了巨膜蛋白 - 立方蛋白复合物在肾小管细胞中内化尿中铁(III) - 转铁蛋白复合物的能力。成熟十二指肠肠上皮细胞对铁的吸收需要十二指肠细胞色素b将铁(III)还原为亚铁(Fe(II)),并通过铁转运蛋白Nramp2/二价金属离子转运体1(DMT1)将亚铁(Fe(II))转运穿过顶端膜。随后,铁转移到基底外侧,通过铁转运蛋白输出,并在与血浆转铁蛋白结合之前由血色素沉着蛋白氧化为铁(III)。巨噬细胞在通过吞噬衰老红细胞、血红素分解代谢和铁循环将铁输送到血浆转铁蛋白的过程中也起着重要作用。巨噬细胞释放铁可能也由铁转运蛋白介导,并且携带铁转运蛋白杂合突变的患者会在肝脏巨噬细胞中出现进行性铁过载。机体水平的铁稳态基于对肠道铁吸收的严格控制以及巨噬细胞对铁的有效循环利用。肝脏中的铁储存与十二指肠肠上皮细胞和巨噬细胞之间的信号传导由铁调素介导,铁调素是一种由肝脏合成并分泌到血浆中的循环肽。铁调素的表达在铁过载或炎症反应时受到刺激,而在贫血和缺氧时下调。铁调素缺乏会导致铁过载,而铁调素过度表达会导致贫血。铁过载时铁调素的合成似乎受HFE分子控制。由于HFE突变导致的遗传性血色素沉着症患者铁调素合成受损,并且在HFE缺陷小鼠中强制表达铁调素转基因可防止铁过载。这些结果开辟了新的治疗前景,特别是有可能使用铁调素或拮抗剂来治疗铁过载疾病。