Suppr超能文献

心肌组织中兴奋传播的模型。

Models of the spreading of excitation in myocardial tissue.

作者信息

Franzone P C, Guerri L

机构信息

Dipartimento di Informatica e Sistemistica, Università di Pavia, Italy.

出版信息

Crit Rev Biomed Eng. 1992;20(3-4):211-53.

PMID:1478092
Abstract

We consider a macroscopic model of the excitation process in the anisotropic myocardium involving the transmembrane, extracellular, and extracardiac potentials v, ue, and u0. The model is described by a reaction-diffusion (R-D) system, and the component v exhibits a front-like behavior reflecting the features of the excitation process. In numerical simulations, the presence of a moving excitation layer imposes severe constraints on the time and space steps to achieve stability and accuracy; consequently, application of the model is very costly in terms of computer time. An approximate model has been derived from the R-D system by means of a singular perturbation technique, and it is described by an eikonal equation, nonlinear and elliptic, in the activation time psi (x). Larger space steps are possible with this equation. From psi (x), we can derive, for a given instant t, the transmembrane potential v and subsequently, by solving an elliptic problem, we can compute the corresponding extracellular and extracardiac potentials ue and u0. The results of the R-D and the eikonal models applied to a portion of the ventricular wall are in excellent agreement; moreover, the eikonal model requires only a small fraction of the computer time needed by the R-D system. Therefore, for large-scale simulations of the excitation process, only the eikonal model has been used, and we investigate its ability to cope with complex situations such as front-front collisions and related potential patterns.

摘要

我们考虑一个涉及跨膜电位(v)、细胞外电位(u_e)和心外电位(u_0)的各向异性心肌兴奋过程的宏观模型。该模型由一个反应扩散(R-D)系统描述,其中分量(v)表现出类似前沿的行为,反映了兴奋过程的特征。在数值模拟中,移动的兴奋层的存在对时间步长和空间步长施加了严格的限制,以实现稳定性和准确性;因此,就计算机时间而言,该模型的应用成本非常高。通过奇异摄动技术从R-D系统推导出了一个近似模型,它由激活时间(\psi(x))中的一个非线性椭圆型的程函方程描述。使用这个方程可以采用更大的空间步长。从(\psi(x)),对于给定的时刻(t),我们可以推导出跨膜电位(v),随后,通过求解一个椭圆问题,我们可以计算出相应的细胞外电位(u_e)和心外电位(u_0)。将R-D模型和程函模型应用于心室壁的一部分的结果非常吻合;此外,程函模型只需要R-D系统所需计算机时间的一小部分。因此,对于兴奋过程的大规模模拟,只使用了程函模型,并且我们研究了它处理诸如前沿碰撞和相关电位模式等复杂情况的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验