Mauroy B, Filoche M, Weibel E R, Sapoval B
Centre de Mathématiques et de leurs Applications, Ecole Normale Supérieure de Cachan, 94235 Cachan, France.
Nature. 2004 Feb 12;427(6975):633-6. doi: 10.1038/nature02287.
The geometry and dimensions of branched structures such as blood vessels or airways are important factors in determining the efficiency of physiological processes. It has been shown that fractal trees can be space filling and can ensure minimal dissipation. The bronchial tree of most mammalian lungs is a good example of an efficient distribution system with an approximate fractal structure. Here we present a study of the compatibility between physical optimization and physiological robustness in the design of the human bronchial tree. We show that this physical optimization is critical in the sense that small variations in the geometry can induce very large variations in the net air flux. Maximum physical efficiency therefore cannot be a sufficient criterion for the physiological design of bronchial trees. Rather, the design of bronchial trees must be provided with a safety factor and the capacity for regulating airway calibre. Paradoxically, our results suggest that bronchial malfunction related to asthma is a necessary consequence of the optimized efficiency of the tree structure.
诸如血管或气道等分支结构的几何形状和尺寸是决定生理过程效率的重要因素。研究表明,分形树可以充满空间并确保最小耗散。大多数哺乳动物肺部的支气管树就是具有近似分形结构的高效分布系统的一个很好的例子。在此,我们展示了一项关于人类支气管树设计中物理优化与生理稳健性之间兼容性的研究。我们表明,这种物理优化至关重要,因为几何形状的微小变化会导致净气流通量产生非常大的变化。因此,最大物理效率对于支气管树的生理设计而言并非充分标准。相反,支气管树的设计必须具备安全系数和调节气道口径的能力。矛盾的是,我们的结果表明,与哮喘相关的支气管功能障碍是树状结构优化效率的必然结果。