Bartol Ignacio R, Graffigna Palomba Martin S, Tano Mauricio E, Dewji Shaheen A
Georgia Institute of Technology, Atlanta, GA, USA.
Idaho National Laboratory, Idaho Falls, ID, USA.
Commun Eng. 2024 Nov 1;3(1):152. doi: 10.1038/s44172-024-00296-z.
The evaluation of aerosol exposure relies on generic mathematical models that assume uniform particle deposition profiles over the human respiratory tract and do not account for subject-specific characteristics. Here we introduce a hybrid-automated computational workflow that generates personalized particle deposition profiles in 3D reconstructed human airways from computed tomography scans using Computational Fluid and Particle Dynamics simulations. This is the first large-scale study to consider realistic airways variability, where 380 lower and 40 upper human respiratory tract 3D geometries are reconstructed and parameterized. The data is clustered into nine groups using random forest regression. Computational fluid and particle dynamics simulations are conducted on these representative geometries using a realistic heavy-breathing respiratory cycle and radioactive iodine-131 as a source term. Monte Carlo radiation transport simulations are performed to obtain detailed energy deposition maps. Our findings emphasize the importance of personalized studies, as minor respiratory tract variations notably influence deposition patterns rather than global parameters of the lower airways, observing more than 30% variance in the mass deposition fraction.
气溶胶暴露评估依赖于通用数学模型,这些模型假定人体呼吸道内颗粒沉积分布均匀,且未考虑个体特异性特征。在此,我们引入一种混合自动化计算工作流程,该流程使用计算流体和颗粒动力学模拟,从计算机断层扫描生成三维重建人体气道中的个性化颗粒沉积分布。这是第一项考虑实际气道变异性的大规模研究,其中重建并参数化了380个下呼吸道和40个上呼吸道三维几何结构。使用随机森林回归将数据聚类为九组。使用逼真的深呼吸呼吸周期和放射性碘-131作为源项,对这些代表性几何结构进行计算流体和颗粒动力学模拟。进行蒙特卡罗辐射传输模拟以获得详细的能量沉积图。我们的研究结果强调了个性化研究的重要性,因为呼吸道的微小变化显著影响沉积模式,而非下呼吸道的整体参数,质量沉积分数观察到超过30%的差异。