Fromme J Christopher, Banerjee Anirban, Huang Susan J, Verdine Gregory L
Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Nature. 2004 Feb 12;427(6975):652-6. doi: 10.1038/nature02306.
The genomes of aerobic organisms suffer chronic oxidation of guanine to the genotoxic product 8-oxoguanine (oxoG). Replicative DNA polymerases misread oxoG residues and insert adenine instead of cytosine opposite the oxidized base. Both bases in the resulting AoxoG mispair are mutagenic lesions, and both must undergo base-specific replacement to restore the original CG pair. Doing so represents a formidable challenge to the DNA repair machinery, because adenine makes up roughly 25% of the bases in most genomes. The evolutionarily conserved enzyme adenine DNA glycosylase (called MutY in bacteria and hMYH in humans) initiates repair of AoxoG to CG by removing the inappropriately paired adenine base from the DNA backbone. A central issue concerning MutY function is the mechanism by which AoxoG mispairs are targeted among the vast excess of AT pairs. Here we report the use of disulphide crosslinking to obtain high-resolution crystal structures of MutY-DNA lesion-recognition complexes. These structures reveal the basis for recognizing both lesions in the A*oxoG pair and for catalysing removal of the adenine base.
需氧生物的基因组中,鸟嘌呤会长期氧化成为具有基因毒性的产物8-氧代鸟嘌呤(oxoG)。复制性DNA聚合酶会误读oxoG残基,并在氧化碱基的对面插入腺嘌呤而非胞嘧啶。由此产生的AoxoG错配中的两个碱基都是诱变损伤,两者都必须经过碱基特异性替换才能恢复原来的CG配对。这样做对DNA修复机制构成了巨大挑战,因为在大多数基因组中,腺嘌呤约占碱基总数的25%。进化上保守的腺嘌呤DNA糖基化酶(在细菌中称为MutY,在人类中称为hMYH)通过从DNA主链上移除配对不当的腺嘌呤碱基,启动AoxoG到CG的修复。关于MutY功能的一个核心问题是,在大量多余的AT对中,AoxoG错配是如何被识别的。在此,我们报告利用二硫键交联获得MutY-DNA损伤识别复合物的高分辨率晶体结构。这些结构揭示了识别A*oxoG对中两种损伤以及催化腺嘌呤碱基去除的基础。