Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, United States of America.
Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, United States of America.
J Mol Biol. 2024 Sep 15;436(18):168710. doi: 10.1016/j.jmb.2024.168710. Epub 2024 Jul 14.
Knowing the conformational ensembles formed by mismatches is crucial for understanding how they are generated and repaired and how they contribute to genomic instability. Here, we review structural and energetic studies of the A-C mismatch in duplex DNA and use the information to identify critical conformational states in its ensemble and their significance in genetic processes. In the 1970s, Topal and Fresco proposed the A-C wobble stabilized by two hydrogen bonds, one requiring protonation of adenine-N1. Subsequent NMR and X-ray crystallography studies showed that the protonated A-C wobble was in dynamic equilibrium with a neutral inverted wobble. The mismatch was shown to destabilize duplex DNA in a sequence- and pH-dependent manner by 2.4-3.8 kcal/mol and to have an apparent pKa ranging between 7.2 and 7.7. The A-C mismatch conformational repertoire expanded as structures were determined for damaged and protein-bound DNA. These structures included Watson-Crick-like conformations forming through tautomerization of the bases that drive replication errors, the reverse wobble forming through rotation of the entire nucleotide proposed to increase the fidelity of DNA replication, and the Hoogsteen base-pair forming through the flipping of the adenine base which explained the unusual specificity of DNA polymerases that bypass DNA damage. Thus, the A-C mismatch ensemble encompasses various conformational states that can be selectively stabilized in response to environmental changes such as pH shifts, intermolecular interactions, and chemical modifications, and these adaptations facilitate critical biological processes. This review also highlights the utility of existing 3D structures to build ensemble models for nucleic acid motifs.
了解错配形成的构象集合对于理解它们是如何产生和修复的,以及它们如何导致基因组不稳定性至关重要。在这里,我们回顾了双链 DNA 中 A-C 错配的结构和能量研究,并利用这些信息来确定其集合中的关键构象状态及其在遗传过程中的意义。在 20 世纪 70 年代,Topal 和 Fresco 提出了由两个氢键稳定的 A-C 摆动,其中一个氢键需要腺嘌呤-N1 的质子化。随后的 NMR 和 X 射线晶体学研究表明,质子化的 A-C 摆动与中性反转摆动处于动态平衡。该错配以序列和 pH 依赖的方式使双链 DNA 不稳定,其稳定性降低 2.4-3.8 kcal/mol,表观 pKa 范围在 7.2 到 7.7 之间。随着受损和蛋白质结合 DNA 的结构确定,A-C 错配的构象范围扩大。这些结构包括通过碱基互变异构形成的 Watson-Crick 样构象,这种构象会导致复制错误;通过整个核苷酸旋转形成的反向摆动,这种构象被认为可以提高 DNA 复制的保真度;以及通过腺嘌呤碱基翻转形成的 Hoogsteen 碱基对,这种构象解释了 DNA 聚合酶绕过 DNA 损伤的异常特异性。因此,A-C 错配集合包含各种构象状态,可以选择性地稳定,以响应环境变化,如 pH 变化、分子间相互作用和化学修饰,这些适应性促进了关键的生物学过程。本综述还强调了利用现有 3D 结构构建核酸基序集合模型的实用性。