Suppr超能文献

使用椭球体提高堵塞无序堆积的密度。

Improving the density of jammed disordered packings using ellipsoids.

作者信息

Donev Aleksandar, Cisse Ibrahim, Sachs David, Variano Evan A, Stillinger Frank H, Connelly Robert, Torquato Salvatore, Chaikin P M

机构信息

Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA.

出版信息

Science. 2004 Feb 13;303(5660):990-3. doi: 10.1126/science.1093010.

Abstract

Packing problems, such as how densely objects can fill a volume, are among the most ancient and persistent problems in mathematics and science. For equal spheres, it has only recently been proved that the face-centered cubic lattice has the highest possible packing fraction phi=pi/18 approximately 0.74. It is also well known that certain random (amorphous) jammed packings have phi approximately 0.64. Here, we show experimentally and with a new simulation algorithm that ellipsoids can randomly pack more densely-up to phi= 0.68 to 0.71 for spheroids with an aspect ratio close to that of M&M's Candies-and even approach phi approximately 0.74 for ellipsoids with other aspect ratios. We suggest that the higher density is directly related to the higher number of degrees of freedom per particle and thus the larger number of particle contacts required to mechanically stabilize the packing. We measured the number of contacts per particle Z approximately 10 for our spheroids, as compared to Z approximately 6 for spheres. Our results have implications for a broad range of scientific disciplines, including the properties of granular media and ceramics, glass formation, and discrete geometry.

摘要

堆积问题,例如物体能以多高的密度填充一个体积,是数学和科学中最古老且持久的问题之一。对于等径球体,直到最近才证明面心立方晶格具有最高的可能堆积分数φ = π/18,约为0.74。同样众所周知的是,某些随机(无定形)的紧密堆积的φ约为0.64。在此,我们通过实验以及一种新的模拟算法表明,对于纵横比接近M&M's巧克力豆的椭球体,其随机堆积能更紧密,堆积分数可达φ = 0.68至0.71,而对于其他纵横比的椭球体,甚至能接近φ约为0.74。我们认为更高的密度直接与每个粒子更高的自由度数量相关,因此与机械稳定堆积所需的更多粒子接触数量有关。我们测量了我们的椭球体每个粒子的接触数Z约为10,而球体的Z约为6。我们的结果对广泛的科学学科都有影响,包括颗粒介质和陶瓷的性质、玻璃形成以及离散几何。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验