Man Weining, Donev Aleksandar, Stillinger Frank H, Sullivan Matthew T, Russel William B, Heeger David, Inati Souheil, Torquato Salvatore, Chaikin P M
Department of Physics, Princeton University, New Jersey 08544, USA.
Phys Rev Lett. 2005 May 20;94(19):198001. doi: 10.1103/PhysRevLett.94.198001. Epub 2005 May 19.
Recent simulations indicate that ellipsoids can pack randomly more densely than spheres and, remarkably, for axes ratios near 1.25:1:0.8 can approach the densest crystal packing (fcc) of spheres, with a packing fraction of 74%. We demonstrate that such dense packings are realizable. We introduce a novel way of determining packing density for a finite sample that minimizes surface effects. We have fabricated ellipsoids and show that, in a sphere, the radial packing fraction phi(r) can be obtained from V(h), the volume of added fluid to fill the sphere to height h. We also obtain phi(r) from a magnetic resonance imaging scan. The measurements of the overall density phi(avr), phi(r) and the core density phi(0) = 0.74 +/- 0.005 agree with simulations.
最近的模拟结果表明,椭球体能够比球体更随机地实现更高密度的堆积,并且值得注意的是,当轴比接近1.25:1:0.8时,其堆积密度能够接近球体的最紧密晶体堆积(面心立方),堆积率为74%。我们证明了这种高密度堆积是可以实现的。我们引入了一种新方法来确定有限样本的堆积密度,该方法能将表面效应降至最低。我们制造了椭球体,并表明在球体中,径向堆积率φ(r)可从V(h)获得,V(h)是将球体填充至高度h时所添加流体的体积。我们还通过磁共振成像扫描获得了φ(r)。对整体密度φ(avr)、φ(r)以及核心密度φ(0) = 0.74 ± 0.005的测量结果与模拟结果相符。