Suppr超能文献

基于小波的心电图信号分析与特征描述。

Wavelet based analysis and characterization of the ECG signal.

作者信息

Burke M J, Nasor M

机构信息

Department of Electronic and Electrical Engineering, University of Dublin, Trinity College, Dublin 2, Republic of Ireland.

出版信息

J Med Eng Technol. 2004 Mar-Apr;28(2):47-55. doi: 10.1080/0309190031000121532.

Abstract

This paper reports the use of a wavelet analysis technique based on the Mexican Hat wavelet to identify the onset and termination points and the duration of the principal constituent components of the human electrocardiogram (ECG). ECG recordings were obtained from 21 healthy subjects aged between 13 and 65 years, over a wide range of heart rates extending from 46 to 184 beats min(-1). A wavelet transform method was then used to locate precisely the positions of the onset, termination and the durations of individual components in the ECG. Component times were then classified according to the heart rate associated with the cardiac cycle to which the component belonged. Second order equations of the form [formula in text] were fitted to the data obtained for each component to characterize its timing variation.

摘要

本文报道了一种基于墨西哥帽小波的小波分析技术,用于识别人类心电图(ECG)主要成分的起始点、终止点和持续时间。从21名年龄在13至65岁之间的健康受试者获取了ECG记录,心率范围广泛,从46次/分钟到184次/分钟。然后使用小波变换方法精确确定ECG中各个成分的起始、终止位置和持续时间。然后根据与该成分所属心动周期相关的心率对成分时间进行分类。将形式为[文中公式]的二阶方程拟合到为每个成分获得的数据中,以表征其时间变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验