Berger Sascha, Fiedler Jan, Reinhardt Ralf, Kaim Wolfgang
Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany.
Inorg Chem. 2004 Feb 23;43(4):1530-8. doi: 10.1021/ic0351388.
Complexes between the chlorometal(III) cations [(C5Me5)ClM]+, M = Rh or Ir, and the 1,10-phenanthroline-derived alpha-diimine (N--N) ligands dipyrido[3,2-a:2',3'-c]phenazine (dppz), 1,4,7,10-tetraazaphenanthrene (tap), or 1,10-phenanthroline-5,6-dione (pdo) were investigated by cyclic voltammetry, EPR, and UV-vis-NIR spectroelectrochemistry with respect to either ligand-based or metal-centered (and then chloride-dissociative) reduction. Two low-lying unoccupied molecular orbitals (MOs) are present in each of these three N wedge N ligands; however, their different energies and interface properties are responsible for different results. Metal-centered chloride-releasing reduction was observed for complexes of the DNA-intercalation ligands dppz and tap to yield compounds [(N--N)(C5Me5)M] in a two-electron step. The separation of alpha-diimine centered optical orbitals and phenazine-based redox orbitals is apparent from the EPR and UV-vis-NIR spectroelectrochemistry of (dppz)(C5Me5)M. In contrast, the pdo complexes undergo a reversible one-electron reduction to yield o-semiquinone radical complexes [(pdo)(C5Me5)ClM]* before releasing the chloride after the second electron uptake. The fact that the dppz complexes undergo a Cl(-)-dissociative two-electron reduction despite the presence of a lowest lying pi* MO (b1(phz)) with very little overlap to the metal suggests that an unoccupied metal/chloride-based orbital is lower in energy. This assertion is confirmed both by the half-wave reduction potentials of the ligands (tap, -1.95 V; dppz, -1.60 V; pdo, -0.85 V) and by the typical reduction peak potentials of the complexes (L)(C5Me5)ClM (tap, -1.1 V; dppz, -1.3 V; pdo, -0.6 V; all values against Fc(+/0)).
通过循环伏安法、电子顺磁共振(EPR)以及紫外-可见-近红外光谱电化学,研究了氯金属(III)阳离子[(C5Me5)ClM]+(M = Rh或Ir)与1,10-菲咯啉衍生的α-二亚胺(N--N)配体二吡啶并[3,2-a:2',3'-c]菲嗪(dppz)、1,4,7,10-四氮杂菲(tap)或1,10-菲咯啉-5,6-二酮(pdo)形成的配合物在基于配体或金属中心(以及随后的氯解离)还原方面的情况。这三种N=N配体中的每一种都存在两个低能未占据分子轨道(MOs);然而,它们不同的能量和界面性质导致了不同的结果。对于DNA插入配体dppz和tap的配合物,观察到以金属为中心的氯释放还原反应,以两步两电子的方式生成化合物[(N--N)(C5Me5)M]。从(dppz)(C5Me5)M的EPR和紫外-可见-近红外光谱电化学中可以明显看出α-二亚胺中心光学轨道和菲嗪基氧化还原轨道的分离。相比之下,pdo配合物经历可逆的单电子还原反应,生成邻半醌自由基配合物[(pdo)(C5Me5)ClM],在吸收第二个电子后再释放氯。尽管存在与金属重叠很少的最低能量π MO(b1(phz)),dppz配合物仍经历Cl(-)解离的两电子还原反应,这一事实表明未占据的基于金属/氯的轨道能量更低。配体的半波还原电位(tap,-1.95 V;dppz,-1.60 V;pdo,-0.85 V)以及配合物(L)(C5Me5)ClM的典型还原峰电位(tap,-1.1 V;dppz,-1.3 V;pdo,-0.6 V;所有值相对于Fc(+/0))都证实了这一论断。