Suppr超能文献

解析多功能分子催化剂中人工光合作用关键催化中间体的光激活反应机制。

Unraveling the Light-Activated Reaction Mechanism in a Catalytically Competent Key Intermediate of a Multifunctional Molecular Catalyst for Artificial Photosynthesis.

机构信息

Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (IPHT), Albert-Einstein-Straße 9, 07745, Jena, Germany.

Department of Inorganic Chemistry I, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.

出版信息

Angew Chem Int Ed Engl. 2019 Sep 9;58(37):13140-13148. doi: 10.1002/anie.201907247. Epub 2019 Aug 19.

Abstract

Understanding photodriven multielectron reaction pathways requires the identification and spectroscopic characterization of intermediates and their excited-state dynamics, which is very challenging due to their short lifetimes. To the best of our knowledge, this manuscript reports for the first time on in situ spectroelectrochemistry as an alternative approach to study the excited-state properties of reactive intermediates of photocatalytic cycles. UV/Vis, resonance-Raman, and transient-absorption spectroscopy have been employed to characterize the catalytically competent intermediate [(tbbpy) Ru (tpphz)Rh Cp*] of [(tbbpy) Ru(tpphz)Rh(Cp*)Cl]Cl(PF ) (Ru(tpphz)RhCp*), a photocatalyst for the hydrogenation of nicotinamide (NAD-analogue) and proton reduction, generated by electrochemical and chemical reduction. Electronic transitions shifting electron density from the activated catalytic center to the bridging tpphz ligand significantly reduce the catalytic activity upon visible-light irradiation.

摘要

理解光驱动的多电子反应途径需要识别和光谱表征中间体及其激发态动力学,由于中间体的寿命很短,这是非常具有挑战性的。据我们所知,本文首次报道了原位光谱电化学作为一种替代方法来研究光催化循环中反应性中间体的激发态性质。采用 UV/Vis、共振拉曼和瞬态吸收光谱来表征[(tbbpy)Ru(tpphz)RhCp*]的催化活性中间体[(tbbpy)Ru(tpphz)Rh(Cp*)Cl]Cl(PF6)(Ru(tpphz)RhCp*),该光催化剂用于催化烟酰胺(NAD 类似物)的加氢和质子还原,通过电化学和化学还原生成。电子跃迁将电子密度从活化的催化中心转移到桥联的 tpphz 配体上,这显著降低了可见光照射下的催化活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2639/6772164/b53643cd0485/ANIE-58-13140-g001.jpg

相似文献

2
Supramolecular activation of a molecular photocatalyst.
Dalton Trans. 2014 Sep 21;43(35):13307-15. doi: 10.1039/c4dt00761a.
3
Tuning of photocatalytic activity by creating a tridentate coordination sphere for palladium.
Dalton Trans. 2014 Aug 14;43(30):11676-86. doi: 10.1039/c4dt01034e. Epub 2014 Jun 20.
4
Ultrafast intramolecular relaxation and wave-packet motion in a ruthenium-based supramolecular photocatalyst.
Chemistry. 2015 May 18;21(21):7668-74. doi: 10.1002/chem.201406350. Epub 2015 Mar 20.
6
Influence of the Linker Chemistry on the Photoinduced Charge-Transfer Dynamics of Hetero-dinuclear Photocatalysts.
Chemistry. 2022 Jun 21;28(35):e202200490. doi: 10.1002/chem.202200490. Epub 2022 May 23.
8
Resonance Raman Spectro-Electrochemistry to Illuminate Photo-Induced Molecular Reaction Pathways.
Molecules. 2019 Jan 10;24(2):245. doi: 10.3390/molecules24020245.
9
New supramolecular structural motif coupling a ruthenium(II) polyazine light absorber to a rhodium(I) center.
Inorg Chem. 2013 Dec 2;52(23):13314-24. doi: 10.1021/ic4006828. Epub 2013 Nov 18.
10
Photophysics of an intramolecular hydrogen-evolving Ru-Pd photocatalyst.
Chemistry. 2009 Aug 3;15(31):7678-88. doi: 10.1002/chem.200900457.

引用本文的文献

1
Nature of Anti-Dissipative High-Energy Excited States in Quaterpyridine-Bridged Ruthenium Complexes.
Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202507738. doi: 10.1002/anie.202507738. Epub 2025 Jun 30.
2
Excited State Branching Processes in a Ru(II)-Based Donor-Acceptor-Donor System.
Chemistry. 2025 Jun 3;31(31):e202404671. doi: 10.1002/chem.202404671. Epub 2025 May 3.
3
Role of Spacers in Molecularly Linked RuRh Dyads: A Comparative Synthetic and Ultrafast Spectroscopic Investigation.
Inorg Chem. 2025 Apr 21;64(15):7273-7285. doi: 10.1021/acs.inorgchem.4c04596. Epub 2025 Apr 10.
5
Photocatalytic Reduction of Nicotinamide Co-factor by Perylene Sensitized Rh Complexes.
Chemistry. 2022 Nov 2;28(61):e202201931. doi: 10.1002/chem.202201931. Epub 2022 Sep 2.
6
Pyrimidoquinazolinophenanthroline Opens Next Chapter in Design of Bridging Ligands for Artificial Photosynthesis.
Chemistry. 2022 Sep 12;28(51):e202200766. doi: 10.1002/chem.202200766. Epub 2022 Jul 26.
7
KiMoPack: A python Package for Kinetic Modeling of the Chemical Mechanism.
J Phys Chem A. 2022 Jun 30;126(25):4087-4099. doi: 10.1021/acs.jpca.2c00907. Epub 2022 Jun 14.
8
Cobalt(III) Carbene Complex with an Electronic Excited-State Structure Similar to Cyclometalated Iridium(III) Compounds.
J Am Chem Soc. 2022 Jun 8;144(22):9859-9873. doi: 10.1021/jacs.2c02592. Epub 2022 May 27.
10
Influence of the Linker Chemistry on the Photoinduced Charge-Transfer Dynamics of Hetero-dinuclear Photocatalysts.
Chemistry. 2022 Jun 21;28(35):e202200490. doi: 10.1002/chem.202200490. Epub 2022 May 23.

本文引用的文献

3
Role of Ligand Protonation in Dihydrogen Evolution from a Pentamethylcyclopentadienyl Rhodium Catalyst.
Inorg Chem. 2017 Sep 18;56(18):11375-11386. doi: 10.1021/acs.inorgchem.7b01698. Epub 2017 Sep 1.
4
Structural and Electrochemical Consequences of [Cp*] Ligand Protonation.
Inorg Chem. 2017 Sep 5;56(17):10824-10831. doi: 10.1021/acs.inorgchem.7b01895. Epub 2017 Aug 23.
5
Optical Sensing of Anions via Supramolecular Recognition with Biimidazole Complexes.
Chemistry. 2017 Dec 22;23(72):18101-18119. doi: 10.1002/chem.201605782. Epub 2017 Oct 24.
6
Proton-hydride tautomerism in hydrogen evolution catalysis.
Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):6409-14. doi: 10.1073/pnas.1606018113. Epub 2016 May 24.
7
Extended charge accumulation in ruthenium-4H-imidazole-based black absorbers: a theoretical design concept.
Phys Chem Chem Phys. 2016 May 11;18(19):13357-67. doi: 10.1039/c6cp00911e.
9
Cyclopentadiene-mediated hydride transfer from rhodium complexes.
Chem Commun (Camb). 2016 Jul 12;52(58):9105-8. doi: 10.1039/c6cc00575f.
10
Optimization of hydrogen-evolving photochemical molecular devices.
Angew Chem Int Ed Engl. 2015 May 26;54(22):6627-31. doi: 10.1002/anie.201409442. Epub 2015 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验