Baranov S V, Tyryshkin A M, Katz D, Dismukes G C, Ananyev G M, Klimov V V
Department of Chemistry, Hoyt Laboratory, Princeton University, Princeton, New Jersey 08544, USA.
Biochemistry. 2004 Feb 24;43(7):2070-9. doi: 10.1021/bi034858n.
Assembly of the inorganic core (Mn(4)O(x)Ca(1)Cl(y)) of the water oxidizing enzyme of oxygenic photosynthesis generates O(2) evolution capacity via the photodriven binding and photooxidation of the free inorganic cofactors within the cofactor-depleted enzyme (apo-WOC-PSII) by a process called photoactivation. Using in vitro photoactivation of spinach PSII membranes, we identify a new lower affinity site for bicarbonate interaction in the WOC. Bicarbonate addition causes a 300% stimulation of the rate and a 50% increase in yield of photoassembled PSII centers when using Mn(2+) and Ca(2+) concentrations that are 10-50-fold larger range than previously examined. Maintenance of a fixed Mn(2+)/Ca(2+) ratio (1:500) produces the fastest rates and highest yields of photoactivation, which has implications for intracellular cofactor homeostasis. A two-step (biexponential) model is shown to accurately fit the assembly kinetics over a 200-fold range of Mn(2+) concentrations. The first step, the binding and photooxidation of Mn(2+) to Mn(3+), is specifically stimulated via formation of a ternary complex between Mn(2+), bicarbonate, and apo-WOC-PSII, having a proposed stoichiometry of [Mn(2+)(HCO(3)(-))]. This low-affinity bicarbonate complex is thermodynamically easier to oxidize than the aqua precursor, [Mn(2+)(OH(2))]. The photooxidized intermediate, [Mn(3+)(HCO(3)(-))], is longer lived and increases the photoactivation yield by suppressing irreversible photodamage to the cofactor-free apo-WOC-PSII (photoinhibition). Bicarbonate does not affect the second (rate-limiting) dark step of photoactivation, attributed to a protein conformational change. Together with the previously characterized high-affinity site, these results reveal that bicarbonate is a multifunctional "native" cofactor important for photoactivation and photoprotection of the WOC-PSII complex.
通过称为光激活的过程,在无辅因子的酶(脱辅基水光解酶 - 光系统II,apo-WOC-PSII)内,光驱动游离无机辅因子的结合和光氧化,使光合放氧酶的无机核心(Mn(4)O(x)Ca(1)Cl(y))组装产生放氧能力。利用菠菜光系统II膜的体外光激活,我们在水光解酶中确定了一个新的低亲和力碳酸氢盐相互作用位点。当使用比之前研究范围大10 - 50倍的Mn(2+)和Ca(2+)浓度时,添加碳酸氢盐会使光组装光系统II中心的速率提高300%,产率增加50%。维持固定的Mn(2+)/Ca(2+)比例(1:500)可产生最快的速率和最高的光激活产率,这对细胞内辅因子稳态具有重要意义。结果表明,一个两步(双指数)模型能在200倍的Mn(2+)浓度范围内准确拟合组装动力学。第一步,Mn(2+)与Mn(3+)的结合和光氧化,通过Mn(2+)、碳酸氢盐和apo-WOC-PSII之间形成三元复合物而受到特异性刺激,其化学计量比为[Mn(2+)(HCO(3)(-))]。这种低亲和力的碳酸氢盐复合物在热力学上比水合前体[Mn(2+)(OH(2))]更容易氧化。光氧化中间体[Mn(3+)(HCO(3)(-))]寿命更长,并通过抑制对无辅因子的apo-WOC-PSII的不可逆光损伤(光抑制)来提高光激活产率。碳酸氢盐不影响光激活的第二步(限速)暗反应步骤,该步骤归因于蛋白质构象变化。与之前表征的高亲和力位点一起,这些结果表明碳酸氢盐是一种对水光解酶 - 光系统II复合物的光激活和光保护很重要的多功能“天然”辅因子。