Chen Yinghua, Abdel-Fattah Wael R, Hulett F Marion
Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
J Bacteriol. 2004 Mar;186(5):1493-502. doi: 10.1128/JB.186.5.1493-1502.2004.
Bacillus subtilis PhoP is a member of the OmpR family of response regulators that activates or represses genes of the Pho regulon upon phosphorylation by PhoR in response to phosphate deficiency. Because PhoP binds DNA and is a dimer in solution independent of its phosphorylation state, phosphorylation of PhoP may optimize DNA binding or the interaction with RNA polymerase. We describe alanine scanning mutagenesis of the PhoP alpha loop and alpha helix 3 region of PhoPC (Val190 to E214) and functional analysis of the mutated proteins. Eight residues important for DNA binding were clustered between Val202 and Arg210. Using in vivo and in vitro functional analyses, we identified three classes of mutated proteins. Class I proteins (PhoP(I206A), PhoP(R210A), PhoP(L209A), and PhoP(H208A)) were phosphorylation proficient and could dimerize but could not bind DNA or activate transcription in vivo or in vitro. Class II proteins (PhoP(H205A) and PhoP(V204A)) were phosphorylation proficient and could dimerize but could not bind DNA prior to phosphorylation. Members of this class had higher transcription activation in vitro than in vivo. The class III mutants, PhoP(V202A) and PhoP(D203A), had a reduced rate of phosphotransfer and could dimerize but could not bind DNA or activate transcription in vivo or in vitro. Seven alanine substitutions in PhoP (PhoP(V190A), PhoP(W191A), PhoP(Y193A), PhoP(F195A), PhoP(G197A,) PhoP(T199A), and PhoP(R200A)) that specifically affected transcription activation were broadly distributed throughout the transactivation loop extending from Val190 to as far toward the C terminus as Arg200. PhoP(W191A) and PhoP(R200A) could not activate transcription, while the other five mutant proteins showed decreased transcription activation in vivo or in vitro or both. The mutagenesis studies may indicate that PhoP has a long transactivation loop and a short alpha helix 3, more similar to OmpR than to PhoB of Escherichia coli.
枯草芽孢杆菌PhoP是应答调节因子OmpR家族的成员,在磷酸盐缺乏时,它会被PhoR磷酸化,从而激活或抑制Pho调节子的基因。由于PhoP结合DNA且在溶液中是二聚体,与它的磷酸化状态无关,PhoP的磷酸化可能会优化DNA结合或与RNA聚合酶的相互作用。我们描述了PhoPC(Val190至E214)的PhoPα环和α螺旋3区域的丙氨酸扫描诱变以及突变蛋白的功能分析。对DNA结合重要的八个残基聚集在Val202和Arg210之间。通过体内和体外功能分析,我们鉴定出三类突变蛋白。I类蛋白(PhoP(I206A)、PhoP(R210A)、PhoP(L209A)和PhoP(H208A))磷酸化能力正常且能形成二聚体,但在体内或体外均不能结合DNA或激活转录。II类蛋白(PhoP(H205A)和PhoP(V204A))磷酸化能力正常且能形成二聚体,但在磷酸化之前不能结合DNA。这类蛋白在体外的转录激活能力高于体内。III类突变体PhoP(V202A)和PhoP(D203A)的磷酸转移速率降低,能形成二聚体,但在体内或体外均不能结合DNA或激活转录。PhoP中的七个丙氨酸取代(PhoP(V190A)、PhoP(W191A)、PhoP(Y193A)、PhoP(F195A)、PhoP(G197A)、PhoP(T199A)和PhoP(R200A))特异性地影响转录激活,广泛分布在从Val190延伸至Arg200的反式激活环中。PhoP(W191A)和PhoP(R200A)不能激活转录,而其他五个突变蛋白在体内或体外或两者均表现出转录激活能力下降。诱变研究可能表明PhoP有一个长的反式激活环和一个短的α螺旋3,与大肠杆菌的OmpR比与PhoB更相似。