Striepen Boris, Pruijssers Andrea J P, Huang Jinling, Li Catherine, Gubbels Marc-Jan, Umejiego Nwakaso N, Hedstrom Lizbeth, Kissinger Jessica C
Center for Tropical and Emerging Global Diseases and Departments of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):3154-9. doi: 10.1073/pnas.0304686101. Epub 2004 Feb 18.
Nucleotide metabolic pathways provide numerous successful targets for antiparasitic chemotherapy, but the human pathogen Cryptosporidium parvum thus far has proved extraordinarily refractory to classical treatments. Given the importance of this protist as an opportunistic pathogen afflicting immunosuppressed individuals, effective treatments are urgently needed. The genome sequence of C. parvum is approaching completion, and we have used this resource to critically assess nucleotide biosynthesis as a target in C. parvum. Genomic analysis indicates that this parasite is entirely dependent on salvage from the host for its purines and pyrimidines. Metabolic pathway reconstruction and experimental validation in the laboratory further suggest that the loss of pyrimidine de novo synthesis is compensated for by possession of three salvage enzymes. Two of these, uridine kinase-uracil phosphoribosyltransferase and thymidine kinase, are unique to C. parvum within the phylum Apicomplexa. Phylogenetic analysis suggests horizontal gene transfer of thymidine kinase from a proteobacterium. We further show that the purine metabolism in C. parvum follows a highly streamlined pathway. Salvage of adenosine provides C. parvum's sole source of purines. This renders the parasite susceptible to inhibition of inosine monophosphate dehydrogenase, the rate-limiting enzyme in the multistep conversion of AMP to GMP. The inosine 5' monophosphate dehydrogenase inhibitors ribavirin and mycophenolic acid, which are already in clinical use, show pronounced anticryptosporidial activity. Taken together, these data help to explain why widely used drugs fail in the treatment of cryptosporidiosis and suggest more promising targets.
核苷酸代谢途径为抗寄生虫化疗提供了众多成功的靶点,但人类病原体微小隐孢子虫迄今为止对传统治疗方法表现出极强的抗性。鉴于这种原生生物作为一种折磨免疫抑制个体的机会性病原体的重要性,迫切需要有效的治疗方法。微小隐孢子虫的基因组序列即将完成,我们利用这一资源对核苷酸生物合成作为微小隐孢子虫的一个靶点进行了严格评估。基因组分析表明,这种寄生虫的嘌呤和嘧啶完全依赖于从宿主中补救获得。实验室中的代谢途径重建和实验验证进一步表明,嘧啶从头合成的缺失通过拥有三种补救酶得到了补偿。其中两种酶,尿苷激酶 - 尿嘧啶磷酸核糖转移酶和胸苷激酶,在顶复门内是微小隐孢子虫所特有的。系统发育分析表明胸苷激酶是从一种变形菌水平基因转移而来。我们进一步表明,微小隐孢子虫的嘌呤代谢遵循一条高度简化的途径。腺苷的补救提供了微小隐孢子虫唯一的嘌呤来源。这使得该寄生虫易受肌苷单磷酸脱氢酶抑制的影响,肌苷单磷酸脱氢酶是将AMP多步转化为GMP的限速酶。临床已使用的肌苷5'单磷酸脱氢酶抑制剂利巴韦林和霉酚酸显示出明显的抗隐孢子虫活性。综上所述,这些数据有助于解释为什么广泛使用的药物在治疗隐孢子虫病时失效,并提示了更有前景的靶点。