Suppr超能文献

通过对高度异质的全基因组数据进行综合分析揭示酵母分子网络中的模块性和组织性。

Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data.

作者信息

Tanay Amos, Sharan Roded, Kupiec Martin, Shamir Ron

机构信息

School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.

出版信息

Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2981-6. doi: 10.1073/pnas.0308661100. Epub 2004 Feb 18.

Abstract

The dissection of complex biological systems is a challenging task, made difficult by the size of the underlying molecular network and the heterogeneous nature of the control mechanisms involved. Novel high-throughput techniques are generating massive data sets on various aspects of such systems. Here, we perform analysis of a highly diverse collection of genomewide data sets, including gene expression, protein interactions, growth phenotype data, and transcription factor binding, to reveal the modular organization of the yeast system. By integrating experimental data of heterogeneous sources and types, we are able to perform analysis on a much broader scope than previous studies. At the core of our methodology is the ability to identify modules, namely, groups of genes with statistically significant correlated behavior across diverse data sources. Numerous biological processes are revealed through these modules, which also obey global hierarchical organization. We use the identified modules to study the yeast transcriptional network and predict the function of >800 uncharacterized genes. Our analysis framework, SAMBA (Statistical-Algorithmic Method for Bicluster Analysis), enables the processing of current and future sources of biological information and is readily extendable to experimental techniques and higher organisms.

摘要

剖析复杂的生物系统是一项具有挑战性的任务,潜在分子网络的规模以及所涉及控制机制的异质性使其变得困难重重。新型高通量技术正在生成关于此类系统各个方面的海量数据集。在此,我们对高度多样化的全基因组数据集进行分析,这些数据集包括基因表达、蛋白质相互作用、生长表型数据以及转录因子结合数据,以揭示酵母系统的模块化组织。通过整合异质来源和类型的实验数据,我们能够在比以往研究更广泛的范围内进行分析。我们方法的核心在于识别模块的能力,即跨不同数据源具有统计学显著相关行为的基因群体。通过这些模块揭示了众多生物过程,它们也遵循全局层次组织。我们使用所识别的模块来研究酵母转录网络并预测800多个未表征基因的功能。我们的分析框架SAMBA(用于双聚类分析的统计算法方法)能够处理当前和未来的生物信息源,并且很容易扩展到实验技术和高等生物。

相似文献

5
Transcriptional regulatory networks in Saccharomyces cerevisiae.酿酒酵母中的转录调控网络。
Science. 2002 Oct 25;298(5594):799-804. doi: 10.1126/science.1075090.
7
Computational discovery of gene modules and regulatory networks.基因模块与调控网络的计算发现
Nat Biotechnol. 2003 Nov;21(11):1337-42. doi: 10.1038/nbt890. Epub 2003 Oct 12.
9
Genome-wide transcriptional changes during the lag phase of Saccharomyces cerevisiae.酿酒酵母迟缓期的全基因组转录变化
Arch Microbiol. 2003 Apr;179(4):278-94. doi: 10.1007/s00203-003-0527-6. Epub 2003 Mar 11.

引用本文的文献

1
G-bic: generating synthetic benchmarks for biclustering.G-bic:生成用于分群分析的合成基准。
BMC Bioinformatics. 2023 Dec 6;24(1):457. doi: 10.1186/s12859-023-05587-4.
4
Modularity in Biological Networks.生物网络中的模块化
Front Genet. 2021 Sep 14;12:701331. doi: 10.3389/fgene.2021.701331. eCollection 2021.
5
Mapping the multiscale structure of biological systems.绘制生物系统的多尺度结构。
Cell Syst. 2021 Jun 16;12(6):622-635. doi: 10.1016/j.cels.2021.05.012.

本文引用的文献

2
The Gene Ontology (GO) database and informatics resource.基因本体论(GO)数据库及信息资源。
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D258-61. doi: 10.1093/nar/gkh036.
3
MIPS: analysis and annotation of proteins from whole genomes.MIPS:全基因组蛋白质的分析与注释
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D41-4. doi: 10.1093/nar/gkh092.
6
Modular organization of cellular networks.细胞网络的模块化组织
Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1128-33. doi: 10.1073/pnas.0237338100. Epub 2003 Jan 21.
7
Transcriptional regulatory networks in Saccharomyces cerevisiae.酿酒酵母中的转录调控网络。
Science. 2002 Oct 25;298(5594):799-804. doi: 10.1126/science.1075090.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验