Suppr超能文献

利用自然交配和人工授精交配数据对产犊至首次输精进行遗传评估。

Genetic evaluation of calving to first insemination using natural and artificial insemination mating data.

作者信息

Donoghue K A, Rekaya R, Bertrand J K, Misztal I

机构信息

Animal and Dairy Science Department, University of Georgia, Athens 30602-2771, USA.

出版信息

J Anim Sci. 2004 Feb;82(2):362-7. doi: 10.2527/2004.822362x.

Abstract

Mating and calving records for 51,084 first-parity heifers in Australian Angus herds were used to examine the relationship between probability of calving to first insemination (CFI) in artificial insemination and natural service (NS) mating data. Calving to first insemination was defined as a binary trait for both sources of data. Two Bayesian models were employed: 1) a bivariate threshold model with CFI in AI data regarded as a trait separate from CFI in NS data and 2) a univariate threshold model with CFI regarded as the same trait for both sources of data. Posterior means (SD) of additive variance in the bivariate analysis were similar: 0.049 (0.013) and 0.075 (0.021) for CFI in AI and NS data, respectively, indicating lack of heterogeneity for this parameter. A similar trend was observed for heritability in the bivariate analysis, with posterior means (SD) of 0.025 (0.007) and 0.048 (0.012) for AI and NS data, respectively. The posterior means (SD) of the additive covariance and corresponding genetic correlation between the traits were 0.048 (0.006) and 0.821 (0.138), respectively. Differences were observed between posterior means for herd-year variance: 0.843 vs. 0.280 for AI and NS data, respectively, which may reflect the higher incidence of 100% conception rates within a herd-year class (extreme category problem) in AI data. Parameter estimates under the univariate model were close to the weighted average of the corresponding parameters under the bivariate model. Posterior means (SD) for additive, herd-year, and service sire variance and heritability under the univariate model were 0.063 (0.007), 0.56 (0.029), 0.131 (0.013), and 0.036 (0.007), respectively. These results indicate that, genetically, cows with a higher probability of CFI when mated using AI also have a high probability of CFI when mated via NS. The high correlation between the two traits, along with the lack of heterogeneity for the additive variance, implies that a common additive variance could be used for AI and NS data. A single-trait analysis of CFI with heterogeneous variances for herd-year and service sire could be implemented. The low estimates of heritability indicate that response to selection for probability of calving to first insemination would be expected to be low.

摘要

澳大利亚安格斯牛群中51,084头头胎母牛的配种和产犊记录被用于研究人工授精(AI)和自然交配(NS)数据中首次输精产犊概率(CFI)之间的关系。对于这两种数据来源,首次输精产犊均被定义为一个二元性状。采用了两个贝叶斯模型:1)一个双变量阈值模型,其中AI数据中的CFI被视为与NS数据中的CFI不同的性状;2)一个单变量阈值模型,其中CFI被视为两种数据来源的相同性状。双变量分析中加性方差的后验均值(标准差)相似:AI数据和NS数据中CFI的后验均值(标准差)分别为0.049(0.013)和0.075(0.021),表明该参数不存在异质性。双变量分析中遗传力也观察到类似趋势,AI数据和NS数据的后验均值(标准差)分别为0.025(0.007)和0.048(0.012)。性状之间加性协方差和相应遗传相关的后验均值(标准差)分别为0.048(0.006)和0.821(0.138)。观察到牛群 - 年份方差后验均值之间存在差异:AI数据和NS数据分别为0.843和0.280,这可能反映了AI数据中牛群 - 年份类别内100%受孕率的较高发生率(极端类别问题)。单变量模型下的参数估计接近双变量模型下相应参数的加权平均值。单变量模型下加性、牛群 - 年份和输精公牛方差以及遗传力的后验均值(标准差)分别为0.063(0.007)、0.56(0.029)、0.131(0.013)和0.036(0.007)。这些结果表明,从遗传角度来看,使用AI配种时CFI概率较高的母牛在通过NS配种时CFI概率也较高。这两个性状之间的高相关性,以及加性方差不存在异质性,意味着可以将一个共同的加性方差用于AI和NS数据。可以实施对CFI进行单性状分析,其中牛群 - 年份和输精公牛方差具有异质性。遗传力的低估计值表明,对首次输精产犊概率进行选择的反应预计会很低。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验