Suppr超能文献

采用三种逐步分析方法对纵向表型进行多变量同胞对连锁分析。

Multivariate sib-pair linkage analysis of longitudinal phenotypes by three step-wise analysis approaches.

作者信息

Guo Zheng, Li Xia, Rao Shaoqi, Moser Kathy L, Zhang Tianwen, Gong Binsheng, Shen Gongqing, Li Lin, Cannata Ruth, Zirzow Erich, Topol Eric J, Wang Qing

机构信息

Department of Computer Science, Harbin Institute of Technology, Harbin, China.

出版信息

BMC Genet. 2003 Dec 31;4 Suppl 1(Suppl 1):S68. doi: 10.1186/1471-2156-4-S1-S68.

Abstract

BACKGROUND

Current statistical methods for sib-pair linkage analysis of complex diseases include linear models, generalized linear models, and novel data mining techniques. The purpose of this study was to further investigate the utility and properties of a novel pattern recognition technique (step-wise discriminant analysis) using the chromosome 10 linkage data from the Framingham Heart Study and by comparing it with step-wise logistic regression and linear regression.

RESULTS

The three step-wise approaches were compared in terms of statistical significance and gene localization. Step-wise discriminant linkage analysis approach performed best; next was step-wise logistic regression; and step-wise linear regression was the least efficient because it ignored the categorical nature of disease phenotypes. Nevertheless, all three methods successfully identified the previously reported chromosomal region linked to human hypertension, marker GATA64A09. We also explored the possibility of using the discriminant analysis to detect gene x gene and gene x environment interactions. There was evidence to suggest the existence of gene x environment interactions between markers GATA64A09 or GATA115E01 and hypertension treatment and gene x gene interactions between markers GATA64A09 and GATA115E01. Finally, we answered the theoretical question "Is a trichotomous phenotype more efficient than a binary?" Unlike logistic regression, discriminant sib-pair linkage analysis might have more power to detect linkage to a binary phenotype than a trichotomous one.

CONCLUSION

We confirmed our previous speculation that step-wise discriminant analysis is useful for genetic mapping of complex diseases. This analysis also supported the possibility of the pattern recognition technique for investigating gene x gene or gene x environment interactions.

摘要

背景

目前用于复杂疾病同胞对连锁分析的统计方法包括线性模型、广义线性模型和新型数据挖掘技术。本研究的目的是利用弗雷明汉心脏研究中10号染色体的连锁数据,进一步研究一种新型模式识别技术(逐步判别分析)的效用和特性,并将其与逐步逻辑回归和线性回归进行比较。

结果

从统计学显著性和基因定位方面对三种逐步分析方法进行了比较。逐步判别连锁分析方法表现最佳;其次是逐步逻辑回归;逐步线性回归效率最低,因为它忽略了疾病表型的分类性质。然而,所有三种方法都成功地识别出了先前报道的与人类高血压相关的染色体区域,即标记GATA64A09。我们还探讨了使用判别分析检测基因×基因和基因×环境相互作用的可能性。有证据表明,标记GATA64A09或GATA115E01与高血压治疗之间存在基因×环境相互作用,标记GATA64A09和GATA115E01之间存在基因×基因相互作用。最后,我们回答了“三分型表型是否比二分型更有效?”这一理论问题。与逻辑回归不同,判别同胞对连锁分析可能在检测与二分型表型的连锁方面比三分型表型更具效力。

结论

我们证实了之前的推测,即逐步判别分析对复杂疾病的基因定位有用。该分析还支持了模式识别技术用于研究基因×基因或基因×环境相互作用的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1de0/1866506/7715b09b158b/1471-2156-4-S1-S68-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验