Suppr超能文献

与肌酸激酶和腺苷酸激酶整合的核苷酸门控KATP通道:在细胞区室化环境中对能量信号的放大、调节和传感

Nucleotide-gated KATP channels integrated with creatine and adenylate kinases: amplification, tuning and sensing of energetic signals in the compartmentalized cellular environment.

作者信息

Selivanov Vitaliy A, Alekseev Alexey E, Hodgson Denice M, Dzeja Petras P, Terzic Andre

机构信息

Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Guggenheim, Rochester, MN 55905, USA.

出版信息

Mol Cell Biochem. 2004 Jan-Feb;256-257(1-2):243-56. doi: 10.1023/b:mcbi.0000009872.35940.7d.

Abstract

Transmission of energetic signals to membrane sensors, such as the ATP-sensitive K+ (KATP) channel, is vital for cellular adaptation to stress. Yet, cell compartmentation implies diffusional hindrances that hamper direct reception of cytosolic energetic signals. With high intracellular ATP levels, KATP channels may sense not bulk cytosolic, but rather local submembrane nucleotide concentrations set by membrane ATPases and phosphotransfer enzymes. Here, we analyzed the role of adenylate kinase and creatine kinase phosphotransfer reactions in energetic signal transmission over the strong diffusional barrier in the submembrane compartment, and translation of such signals into a nucleotide response detectable by KATP channels. Facilitated diffusion provided by creatine kinase and adenylate kinase phosphotransfer dissipated nucleotide gradients imposed by membrane ATPases, and shunted diffusional restrictions. Energetic signals, simulated as deviation of bulk ATP from its basal level, were amplified into an augmented nucleotide response in the submembrane space due to failure under stress of creatine kinase to facilitate nucleotide diffusion. Tuning of creatine kinase-dependent amplification of the nucleotide response was provided by adenylate kinase capable of adjusting the ATP/ADP ratio in the submembrane compartment securing adequate KATP channel response in accord with cellular metabolic demand. Thus, complementation between creatine kinase and adenylate kinase systems, here predicted by modeling and further supported experimentally, provides a mechanistic basis for metabolic sensor function governed by alterations in intracellular phosphotransfer fluxes.

摘要

将能量信号传递至膜传感器,如ATP敏感性钾离子(KATP)通道,对于细胞适应应激至关重要。然而,细胞区室化意味着扩散障碍,会阻碍胞质能量信号的直接接收。在细胞内ATP水平较高时,KATP通道可能感知的不是整体胞质中的核苷酸浓度,而是由膜ATP酶和磷酸转移酶设定的局部膜下核苷酸浓度。在此,我们分析了腺苷酸激酶和肌酸激酶磷酸转移反应在能量信号跨越膜下区室中强大扩散屏障的传递过程中的作用,以及将此类信号转化为可被KATP通道检测到的核苷酸反应的过程。肌酸激酶和腺苷酸激酶磷酸转移提供的易化扩散消除了膜ATP酶施加的核苷酸梯度,并绕过了扩散限制。由于应激时肌酸激酶促进核苷酸扩散的功能失效,作为整体ATP与其基础水平偏差模拟的能量信号在膜下空间被放大为增强的核苷酸反应。腺苷酸激酶能够调节膜下区室中的ATP/ADP比值,从而根据细胞代谢需求确保KATP通道有适当反应,进而实现了对肌酸激酶依赖性核苷酸反应放大的调节。因此,肌酸激酶和腺苷酸激酶系统之间的互补作用,在此通过建模预测并得到实验进一步支持,为受细胞内磷酸转移通量变化调控的代谢传感器功能提供了一个机制基础。

相似文献

3
Phosphotransfer reactions in the regulation of ATP-sensitive K+ channels.
FASEB J. 1998 May;12(7):523-9. doi: 10.1096/fasebj.12.7.523.
4
Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels.
Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7623-8. doi: 10.1073/pnas.121038198. Epub 2001 Jun 5.
6
ATP-sensitive potassium channels: metabolic sensing and cardioprotection.
J Appl Physiol (1985). 2007 Nov;103(5):1888-93. doi: 10.1152/japplphysiol.00747.2007. Epub 2007 Jul 19.
7
Reversal of the ATP-liganded state of ATP-sensitive K+ channels by adenylate kinase activity.
J Biol Chem. 1996 Dec 13;271(50):31903-8. doi: 10.1074/jbc.271.50.31903.
8
AMPK modulates glucose-sensing in insulin-secreting cells by altered phosphotransfer to KATP channels.
J Bioenerg Biomembr. 2013 Jun;45(3):229-41. doi: 10.1007/s10863-013-9509-9. Epub 2013 Apr 11.
9
ATP-sensitive K+ channel channel/enzyme multimer: metabolic gating in the heart.
J Mol Cell Cardiol. 2005 Jun;38(6):895-905. doi: 10.1016/j.yjmcc.2005.02.022. Epub 2005 Apr 14.

引用本文的文献

2
K channel dependent heart multiome atlas.
Sci Rep. 2022 May 5;12(1):7314. doi: 10.1038/s41598-022-11323-4.
3
The Potential Role of Creatine in Vascular Health.
Nutrients. 2021 Mar 5;13(3):857. doi: 10.3390/nu13030857.
5
AK4 Promotes the Progression of HER2-Positive Breast Cancer by Facilitating Cell Proliferation and Invasion.
Dis Markers. 2019 Nov 20;2019:8186091. doi: 10.1155/2019/8186091. eCollection 2019.
8
The effect of medium viscosity on kinetics of ATP hydrolysis by the chloroplast coupling factor CF1.
Photosynth Res. 2016 May;128(2):163-8. doi: 10.1007/s11120-015-0213-y. Epub 2016 Jan 12.
10
ABCC9 is a novel Brugada and early repolarization syndrome susceptibility gene.
Int J Cardiol. 2014 Feb 15;171(3):431-42. doi: 10.1016/j.ijcard.2013.12.084. Epub 2014 Jan 4.

本文引用的文献

1
Kir6.2 is required for adaptation to stress.
Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13278-83. doi: 10.1073/pnas.212315199. Epub 2002 Sep 23.
2
Adenylate kinase AK1 knockout heart: energetics and functional performance under ischemia-reperfusion.
Am J Physiol Heart Circ Physiol. 2002 Aug;283(2):H776-82. doi: 10.1152/ajpheart.00116.2002.
3
Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer.
Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):10156-61. doi: 10.1073/pnas.152259999. Epub 2002 Jul 15.
5
31P NMR detection of subcellular creatine kinase fluxes in the perfused rat heart: contractility modifies energy transfer pathways.
J Biol Chem. 2002 May 24;277(21):18469-76. doi: 10.1074/jbc.M200792200. Epub 2002 Mar 8.
6
Tandem function of nucleotide binding domains confers competence to sulfonylurea receptor in gating ATP-sensitive K+ channels.
J Biol Chem. 2002 Apr 19;277(16):14206-10. doi: 10.1074/jbc.M109452200. Epub 2002 Feb 1.
7
Creatine kinase is physically associated with the cardiac ATP-sensitive K+ channel in vivo.
FASEB J. 2002 Jan;16(1):102-4. doi: 10.1096/fj.01-0466fje. Epub 2001 Nov 29.
8
Cellular energetics in the preconditioned state: protective role for phosphotransfer reactions captured by 18O-assisted 31P NMR.
J Biol Chem. 2001 Nov 30;276(48):44812-9. doi: 10.1074/jbc.M104425200. Epub 2001 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验