Suppr超能文献

黑腹果蝇基因组高分辨率缺失覆盖度的系统生成。

Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome.

作者信息

Parks Annette L, Cook Kevin R, Belvin Marcia, Dompe Nicholas A, Fawcett Robert, Huppert Kari, Tan Lory R, Winter Christopher G, Bogart Kevin P, Deal Jennifer E, Deal-Herr Megan E, Grant Deanna, Marcinko Marie, Miyazaki Wesley Y, Robertson Stephanie, Shaw Kenneth J, Tabios Mariano, Vysotskaia Valentina, Zhao Lora, Andrade Rachel S, Edgar Kyle A, Howie Elizabeth, Killpack Keith, Milash Brett, Norton Amanda, Thao Doua, Whittaker Kellie, Winner Millicent A, Friedman Lori, Margolis Jonathan, Singer Matthew A, Kopczynski Casey, Curtis Daniel, Kaufman Thomas C, Plowman Gregory D, Duyk Geoffrey, Francis-Lang Helen L

机构信息

Exelixis, 170 Harbor Way, South San Francisco, California 94083-0511, USA.

出版信息

Nat Genet. 2004 Mar;36(3):288-92. doi: 10.1038/ng1312. Epub 2004 Feb 22.

Abstract

In fruit fly research, chromosomal deletions are indispensable tools for mapping mutations, characterizing alleles and identifying interacting loci. Most widely used deletions were generated by irradiation or chemical mutagenesis. These methods are labor-intensive, generate random breakpoints and result in unwanted secondary mutations that can confound phenotypic analyses. Most of the existing deletions are large, have molecularly undefined endpoints and are maintained in genetically complex stocks. Furthermore, the existence of haplolethal or haplosterile loci makes the recovery of deletions of certain regions exceedingly difficult by traditional methods, resulting in gaps in coverage. Here we describe two methods that address these problems by providing for the systematic isolation of targeted deletions in the D. melanogaster genome. The first strategy used a P element-based technique to generate deletions that closely flank haploinsufficient genes and minimize undeleted regions. This deletion set has increased overall genomic coverage by 5-7%. The second strategy used FLP recombinase and the large array of FRT-bearing insertions described in the accompanying paper to generate 519 isogenic deletions with molecularly defined endpoints. This second deletion collection provides 56% genome coverage so far. The latter methodology enables the generation of small custom deletions with predictable endpoints throughout the genome and should make their isolation a simple and routine task.

摘要

在果蝇研究中,染色体缺失是用于绘制突变图谱、鉴定等位基因和识别相互作用位点的不可或缺的工具。最广泛使用的缺失是通过辐射或化学诱变产生的。这些方法 labor-intensive,产生随机断点,并导致不需要的二次突变,这些突变会混淆表型分析。现有的大多数缺失都很大,具有分子上未定义的端点,并保存在遗传复杂的品系中。此外,单倍体致死或单倍体不育位点的存在使得通过传统方法极其困难地回收某些区域的缺失,导致覆盖范围存在缺口。在这里,我们描述了两种方法,通过在黑腹果蝇基因组中系统地分离靶向缺失来解决这些问题。第一种策略使用基于 P 元件的技术来产生紧密侧翼单倍体不足基因的缺失,并最小化未缺失区域。这个缺失集使整体基因组覆盖范围增加了 5-7%。第二种策略使用 FLP 重组酶和随附论文中描述的大量携带 FRT 的插入片段来产生 519 个具有分子定义端点的同基因缺失。到目前为止,这个第二个缺失集合提供了 56% 的基因组覆盖范围。后一种方法能够在整个基因组中产生具有可预测端点的小的定制缺失,并且应该使它们的分离成为一项简单的常规任务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验