Helmlinger Dominique, Abou-Sleymane Gretta, Yvert Gaël, Rousseau Stéphane, Weber Chantal, Trottier Yvon, Mandel Jean-Louis, Devys Didier
Department of Molecular Pathology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique-Institut National de la Santé et de la Recherche Médicale-Université Louis Pasteur, Illkirch, France.
J Neurosci. 2004 Feb 25;24(8):1881-7. doi: 10.1523/JNEUROSCI.4407-03.2004.
Nine neurodegenerative diseases including Huntington's disease (HD) and spinocerebellar ataxia type 7 (SCA7) are caused by an expansion of a polyglutamine (polyQ) stretch in the respective proteins. Aggregation of expanded polyQ-containing proteins into the nucleus is a hallmark of these diseases. Recent evidence indicates that transcriptional dysregulation may contribute to the molecular pathogenesis of these diseases. Using SCA7 and HD mouse models in which we recently described a retinal phenotype, we investigated whether altered gene expression underlies photoreceptor dysfunction. In both models, rhodopsin promoter activity was early and dramatically repressed, suggesting that downregulation of photoreceptor-specific genes plays a major role in polyQ-induced retinal dysfunction. Because the rhodopsin promoter drives mutant ataxin-7 expression in our SCA7 mice, we also assessed whether downregulation of mutant SCA7 transgene would reverse retinopathy progression and aggregate formation. Although residual expression of mutant ataxin-7 was found negligible from 9 weeks of age, SCA7 transgenic mice showed a progressive decline of photoreceptor activity leading to a complete loss of electroretinographic responses from 1 year of age. At this age, aggregates were cleared in only half of the photoreceptors, indicating that their formation is not fully reversible in this model. We demonstrate here that abolishing full-length mutant ataxin-7 expression did not reverse retinopathy progression in SCA7 mice, raising the possibility that some polyQ-induced pathological events might be irreversible.
包括亨廷顿舞蹈症(HD)和7型脊髓小脑共济失调(SCA7)在内的九种神经退行性疾病是由各自蛋白质中多聚谷氨酰胺(polyQ)片段的扩增引起的。含有扩增的polyQ的蛋白质聚集到细胞核中是这些疾病的一个标志。最近的证据表明,转录失调可能促成这些疾病的分子发病机制。利用我们最近描述了视网膜表型的SCA7和HD小鼠模型,我们研究了基因表达改变是否是光感受器功能障碍的基础。在这两种模型中,视紫红质启动子活性早期就被显著抑制,这表明光感受器特异性基因的下调在polyQ诱导的视网膜功能障碍中起主要作用。由于视紫红质启动子驱动我们的SCA7小鼠中突变型ataxin-7的表达,我们还评估了突变型SCA7转基因的下调是否会逆转视网膜病变进展和聚集体形成。尽管从9周龄起就发现突变型ataxin-7的残留表达可忽略不计,但SCA7转基因小鼠的光感受器活性仍逐渐下降,导致从1岁起视网膜电图反应完全丧失。在这个年龄,聚集体仅在一半的光感受器中清除,这表明在该模型中它们的形成并非完全可逆。我们在此证明,消除全长突变型ataxin-7的表达并不能逆转SCA7小鼠的视网膜病变进展,这增加了一些polyQ诱导的病理事件可能不可逆的可能性。