Institute of Genetic and Molecular and Cellular Biology (IGBMC), Centre National de la Recherche Scientifique (UMR7104), Institut National de la Santé et de la Recherche Médicale (U1258), University of Strasbourg, Illkirch, France.
Neurotherapeutics. 2019 Oct;16(4):1074-1096. doi: 10.1007/s13311-019-00778-5.
Spinocerebellar ataxia type 7 (SCA7) is a rare autosomal dominant neurodegenerative disorder characterized by progressive neuronal loss in the cerebellum, brainstem, and retina, leading to cerebellar ataxia and blindness as major symptoms. SCA7 is due to the expansion of a CAG triplet repeat that is translated into a polyglutamine tract in ATXN7. Larger SCA7 expansions are associated with earlier onset of symptoms and more severe and rapid disease progression. Here, we summarize the pathological and genetic aspects of SCA7, compile the current knowledge about ATXN7 functions, and then focus on recent advances in understanding the pathogenesis and in developing biomarkers and therapeutic strategies. ATXN7 is a bona fide subunit of the multiprotein SAGA complex, a transcriptional coactivator harboring chromatin remodeling activities, and plays a role in the differentiation of photoreceptors and Purkinje neurons, two highly vulnerable neuronal cell types in SCA7. Polyglutamine expansion in ATXN7 causes its misfolding and intranuclear accumulation, leading to changes in interactions with native partners and/or partners sequestration in insoluble nuclear inclusions. Studies of cellular and animal models of SCA7 have been crucial to unveil pathomechanistic aspects of the disease, including gene deregulation, mitochondrial and metabolic dysfunctions, cell and non-cell autonomous protein toxicity, loss of neuronal identity, and cell death mechanisms. However, a better understanding of the principal molecular mechanisms by which mutant ATXN7 elicits neurotoxicity, and how interconnected pathogenic cascades lead to neurodegeneration is needed for the development of effective therapies. At present, therapeutic strategies using nucleic acid-based molecules to silence mutant ATXN7 gene expression are under development for SCA7.
脊髓小脑共济失调 7 型(SCA7)是一种罕见的常染色体显性神经退行性疾病,其特征是小脑、脑干和视网膜中的神经元进行性丧失,导致共济失调和失明等主要症状。SCA7 是由于 ATXN7 中 CAG 三核苷酸重复序列的扩展而导致多聚谷氨酰胺链的延伸。较大的 SCA7 扩展与症状的早期发作以及更严重和快速的疾病进展相关。在这里,我们总结了 SCA7 的病理学和遗传学方面,汇编了关于 ATXN7 功能的现有知识,然后重点介绍了对发病机制的理解以及生物标志物和治疗策略的最新进展。ATXN7 是多蛋白 SAGA 复合物的一个真正亚基,SAGA 复合物是一种转录共激活因子,具有染色质重塑活性,并在 SCA7 中两种高度易受影响的神经元细胞类型——光感受器和浦肯野神经元的分化中发挥作用。ATXN7 中的多聚谷氨酰胺扩展导致其错误折叠和核内积累,导致与天然伴侣的相互作用发生变化,或伴侣在不溶性核包含物中被隔离。对 SCA7 的细胞和动物模型的研究对于揭示疾病的病理机制方面至关重要,包括基因失调、线粒体和代谢功能障碍、细胞和非细胞自主的蛋白毒性、神经元身份丧失和细胞死亡机制。然而,需要更好地了解突变 ATXN7 引发神经毒性的主要分子机制,以及致病级联如何相互关联导致神经退行性变,以便开发有效的治疗方法。目前,正在开发使用基于核酸的分子来沉默突变 ATXN7 基因表达的治疗策略来治疗 SCA7。