Suppr超能文献

在急诊科患者记录数据库中,将自由文本投诉自动链接到就诊原因类别和国际疾病分类诊断。

Automated linking of free-text complaints to reason-for-visit categories and International Classification of Diseases diagnoses in emergency department patient record databases.

作者信息

Day Frank C, Schriger David L, La Michael

机构信息

University of California-Los Angeles School of Medicine, Los Angeles, CA, USA.

出版信息

Ann Emerg Med. 2004 Mar;43(3):401-9. doi: 10.1016/s0196-0644(03)00748-0.

Abstract

STUDY OBJECTIVE

The use of the International Classification of Diseases system to describe emergency department (ED) case mix has disadvantages. We therefore developed computer algorithms that recognize a combination of words, word fragments, and word patterns to link free-text complaint fields to 20 reason-for-visit categories. We examine the feasibility and reliability of applying these reason-for-visit categories to ED patient-visit databases.

METHODS

We analyzed a database (containing complaints and International Classification of Diseases diagnoses for 1 year's visits to a single ED) using a 3-step process (create initial terms, maximize sensitivity, maximize specificity) to define inclusion and exclusion terms for 20 reason-for-visit categories. To assess the reliability of the reason-for-visit assignment algorithm, we repeated the final 2 steps on a second database, composed of visits sampled from 21 EDs. For each database, we determined the prevalence of complaints that link to each reason-for-visit category and the distributions of International Classification of Diseases, Ninth Revision diagnoses that resulted for all patients and patients stratified by age.

RESULTS

The 20 reason-for-visit categories capture 77% of all patients in database 1 (mean age 33.5 years) and 67% of all patients in database 2 (mean age 38.9 years). The percentage of visits captured by the 20 reason-for-visit categories, by age range, for databases 1 and 2 are (respectively) 0 to 2 years (84% and 76%), 3 to 10 years (82% and 74%), 11 to 65 years (76% and 68%), and 66 years or older (69% and 60%). The proportions of all complaints that link to each reason-for-visit category are largely similar between databases. Every complaint field that is linked to each reason-for-visit category includes at least 1 term that relates it to the category title, and the most frequently assigned diagnoses in each reason-for-visit category are those that one would expect to be associated with the reason-for-visit category complaints.

CONCLUSION

The method by which free-text complaint fields are parsed into reason-for-visit categories is feasible and reasonably reliable; the finalized database 1 reason-for-visit category inclusion/exclusion terms lists required only modest changes to work well in database 2. The reason-for-visit categories used here are broadly defined to maximize the proportion of visits that they capture; more narrowly defined reason-for-visit categories will require more extensive revision of their inclusion/exclusion terms lists when used in different databases. A prospective, reason-for-visit-based ED classification system could have several useful applications (including syndromic surveillance), although content validity analysis will be necessary to investigate this hypothesis.

摘要

研究目的

使用国际疾病分类系统来描述急诊科(ED)病例组合存在缺点。因此,我们开发了计算机算法,该算法能够识别单词、单词片段和单词模式的组合,以将自由文本的主诉字段链接到20个就诊原因类别。我们检验了将这些就诊原因类别应用于急诊科患者就诊数据库的可行性和可靠性。

方法

我们使用一个三步流程(创建初始术语、最大化敏感性、最大化特异性)分析了一个数据库(包含一家急诊科1年就诊的主诉和国际疾病分类诊断),以定义20个就诊原因类别的纳入和排除术语。为了评估就诊原因分配算法的可靠性,我们在第二个数据库上重复了最后两步,该数据库由从21家急诊科抽取的就诊病例组成。对于每个数据库,我们确定了与每个就诊原因类别相关的主诉的患病率,以及所有患者和按年龄分层的患者的国际疾病分类第九版诊断分布情况。

结果

20个就诊原因类别涵盖了数据库1中所有患者的77%(平均年龄33.5岁)和数据库2中所有患者的67%(平均年龄38.9岁)。数据库1和数据库2中按年龄范围划分的20个就诊原因类别所涵盖的就诊百分比分别为:0至2岁(84%和76%)、3至10岁(82%和74%)、11至65岁(76%和68%)以及66岁及以上(69%和60%)。与每个就诊原因类别相关的所有主诉的比例在两个数据库之间大致相似。与每个就诊原因类别相关的每个主诉字段至少包含一个将其与类别标题相关联的术语,并且每个就诊原因类别中最常分配的诊断是那些人们预期与就诊原因类别主诉相关的诊断。

结论

将自由文本主诉字段解析为就诊原因类别的方法是可行且相当可靠的;最终确定的数据库1就诊原因类别纳入/排除术语列表只需进行适度修改就能在数据库2中良好运行。这里使用的就诊原因类别定义较为宽泛,以最大限度地提高它们所涵盖的就诊比例;当在不同数据库中使用时,定义更狭窄的就诊原因类别将需要对其纳入/排除术语列表进行更广泛的修订。基于就诊原因的前瞻性急诊科分类系统可能有几个有用的应用(包括症状监测),尽管需要进行内容效度分析来研究这一假设。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验