Accardi Alessio, Miller Christopher
Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA.
Nature. 2004 Feb 26;427(6977):803-7. doi: 10.1038/nature02314.
ClC Cl- channels make up a large molecular family, ubiquitous with respect to both organisms and cell types. In eukaryotes, these channels fulfill numerous biological roles requiring gated anion conductance, from regulating skeletal muscle excitability to facilitating endosomal acidification by (H+)ATPases. In prokaryotes, ClC functions are unknown except in Escherichia coli, where the ClC-ec1 protein promotes H+ extrusion activated in the extreme acid-resistance response common to enteric bacteria. Recently, the high-resolution structure of ClC-ec1 was solved by X-ray crystallography. This primal prokaryotic ClC structure has productively guided understanding of gating and anion permeation in the extensively studied eukaryotic ClC channels. We now show that this bacterial homologue is not an ion channel, but rather a H+-Cl- exchange transporter. As the same molecular architecture can support two fundamentally different transport mechanisms, it seems that the structural boundary separating channels and transporters is not as clear cut as generally thought.
氯离子通道(ClC)构成了一个庞大的分子家族,在生物和细胞类型方面都广泛存在。在真核生物中,这些通道发挥着众多需要门控阴离子传导的生物学作用,从调节骨骼肌兴奋性到通过(H+)ATP酶促进内体酸化。在原核生物中,除了在大肠杆菌中,ClC的功能尚不清楚,在大肠杆菌中,ClC-ec1蛋白促进H+的排出,这种排出在肠道细菌常见的极端耐酸反应中被激活。最近,通过X射线晶体学解析了ClC-ec1的高分辨率结构。这种原始的原核ClC结构有效地指导了对广泛研究的真核ClC通道的门控和阴离子渗透的理解。我们现在表明,这种细菌同源物不是离子通道,而是一种H+-Cl-交换转运体。由于相同的分子结构可以支持两种根本不同的运输机制,看来区分通道和转运体的结构界限并不像通常认为的那样清晰。